

User's Manual ISO Programming

TNC 426 TNC 425 TNC 415 B TNC 407

Controls on the TNC 426, TNC 425, TNC 415 B and **TNC 407**

Controls on the visual display unit

Toggle display between machining and programming modes

GRAPHICS TEXT SPLIT

Split screen layout

Soft keys for selecting functions in screen

Shift keys for the soft keys

Brightness, contrast

Typewriter keyboard for entering letters and symbols

File names/

ISO programming

Machine operating modes

MANUAL OPERATION

EL. HANDWHEEL

POSITIONING WITH MDI

PROGRAM RUN/SINGLE BLOCK

PROGRAM RUN/FULL SEQUENCE

Programming modes

PROGRAMMING AND EDITING

TEST RUN

Program and file management

Select programs and files

Delete programs and files (not on TNC 426)

Enter program call in a program

External data transfer (not on TNC 426)

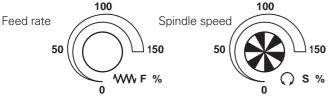
MOD

MOD functions

CALC

Pocket calculator (TNC 426 only)

Moving the cursor and going directly to blocks, cycles and parameter functions



Move the cursor (highlight)

Go directly to blocks, cycles and parameter functions

Override control knobs

Programming path movements (conversational programming only)

Approach/depart contour

Straight line

Circle center/pole for polar coordinates

Circle with center

Circle with radius

Tangential circle

Chamfer

Corner rounding

Tool functions (conversational programming only)

Enter or call tool length and radius

Activate tool radius compensation (not on TNC 426)

Cycles, subprograms and program section repeats (conversational programming only)

Define and call cycles

Enter and call labels for subprogramming and program section repeats

Enter program stop in a program

Enter touch probe functions in a program

Coordinate axes and numbers, editing

Select coordinate axes or enter them into a program

Numbers

Decimal point

Arithmetic sign

Polar coordinates

Ι

Q parameters for part families or

mathematicalfunctions Capture actual position

Incremental dimensions

Skip dialog questions, delete words

Confirm entry and resume dialog

End block

Clear numerical entry or TNC message

Abort dialog, delete program sections

TNC Guideline

From the workpiece drawing to program-controlled machining

Step	Task	TNC operating mode	Section in manual
	Preparation		
1	Select tools		
2	Set workpiece datum for coordinate system		
3	Determine spindle speeds and feed rates		
4	Switch on the machine		1.3
5	Cross over reference marks	or 🔕	1.3, 2.1
6	Clamp workpiece		
7	Set datum / Reset position display		
 7a	with 3D touch probe	or 🔕	2.5
7b	without 3D touch probe	or 🔕	2.3
	Entering and testing part program	าร	
8	Enter part program or download over external data interface	or Ext	5 to 8, 9
9	Test part program for errors	→	3.1
10	Test run: Run the program block by block without tool		3.2
11	Optimize the part program (if necessary)	♦	5 to 8
	Machining the workpiece		
12	Insert tool and run program	=	3.2

How to use this manual

This manual describes functions and features available on TNCs as of the following NC software numbers:

	NC Software No.
TNC 407	280 580 04
TNC 415 B, TNC 425	280 540 04
TNC 415 F, TNC 425 E	280 560 04
TNC 426 CA, TNC 426 PA	280 462 01
TNC 426 CE, TNC 426 PE	280 482 01

The suffixes E and F indicate export versions of the TNC.

The export versions TNC 415 F, TNC 425 E, TNC 426 CE, and TNC 426 PE have the following limitations:

- Input and machining accuracy are limited to 1 μm
- Simultaneous linear movement in up to 4 axes

Some of the functions described in this manual are not available on all TNCs. These functions are marked with symbols:

Function not available on the TNC 407

Function not available on the TNC 415

Function not available on the TNC 425

Function not available on the TNC 426

The machine manufacturer adapts the features offered by the TNC to the capabilities of the specific machine tool by setting machine parameters. This means that not every machine tool will have all of the functions described in this manual.

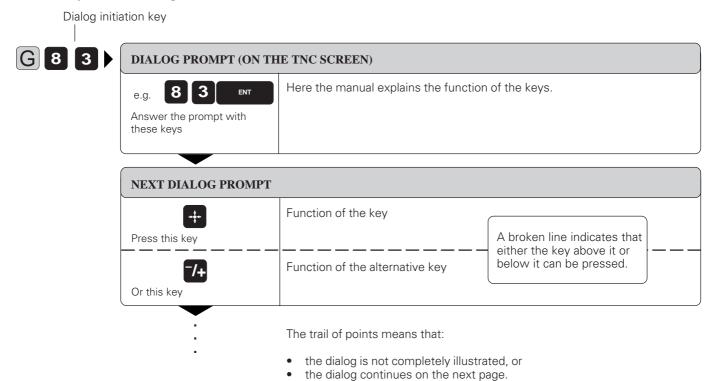
Some of the TNC functions which are not available on every machine are:

- Probe functions for the 3D touch probe
- Digitizing option (conversational programming only)
- Measuring tools with the TT 120 touch probe (conversational programming only)
- Rigid tapping
- Re-approaching a contour after an interruption

Your machine manual provides more detailed information. If you think a function may be unavailable because of a defect, please contact the machine tool builder.

Many machine manufacturers and HEIDENHAIN offer programming courses for the TNCs. We recommend these courses as an effective way of improving your programming skill and sharing information and ideas with other TNC users.

This manual is intended both for the TNC beginner and the TNC expert.


The **TNC beginner** can use it as a step-by-step workbook. The manual begins with an explanation of the basics of numerical control (NC) and provides a glimpse into their application in the TNC. It then introduces the technique of conversational programming. All of the examples can be practiced directly on the TNC. Each function is explained thoroughly when it is used for the first time.

The TNC beginner should work through this manual completely from beginning to end to ensure that he is capable of fully exploiting the features of this powerful tool.

The **TNC expert** can use the manual as a comprehensive review and reference work. The table of contents and numerous cross references help him quickly find the topics and information he needs. Easy-to-read dialog flowcharts show him how to enter data for the desired function.

The dialog flowcharts aid the beginner by providing a description of the function of each key in a box to its right. If the user already knows the keys, he can concentrate on the illustrated input overview at the left of the flowchart. The TNC dialog messages are represented in shaded boxes above the answering input sequence.

Layout of the dialog flowcharts

Abbreviated dialog flowcharts

In abbreviated flowcharts an arrow (\blacktriangleright) is used to indicate new entries or work steps.

Contents User's Manual TNC 407, TNC 415 B, TNC 425, TNC 426 (280 5x0-xx, 280 462-xx) ISO Programming

Introduction	1
Manual Operation and Setup	2
Test Run and Program Run	3
Programming	4
Programming Tool Movements	5
Subprograms and Program Section Repeats	6
Programming with Q Parameters	7
Cycles	8
External Data Transfer	9
MOD-Functions	10
Tabels, Overviews and Diagrams	11

1 Introduction

1.1	The TNC 400 Series	1-2
	Keyboard	1-4
	Visual display unit	
	TNC Accessories	
1.2	Fundamentals of NC	1-10
	Introduction	1-10
	What is NC?	
	The part program	
	Programming	
	Reference system	
	Cartesian coordinate system	1-11
	Additional axes	
	Polar coordinates	
	Setting the pole	
	Datum setting	
	Absolute workpiece positions	
	Incremental workpiece positions	
	Programming tool movements	
	Position encoders	
	Reference marks	1-18
1.3	Switch-On	1-19
1.4	Graphics and Status Displays	1-20
	Graphics during program run	
	Plan view	
	Projection in 3 planes	
	Cursor position during projection in 3 planes	
	3D view	
	Magnifying details	
	Repeating graphic simulation	
	Measuring the machining time	
	Status displays	1-27
	Additional status displays	1-27
1.5	File Management on the TNC 426	1-30
	Data security	1 20
	Calling the file manager Functions for file management	
	Selecting file types	
	To copy individual files	
	To copy several files into another directory	
	To erase a file	
	To rename a file	
	To protect a file	
	To cancel file protection	
	To convert a file	

File Management on the TNC 425, TNC 415 B and TNC 407 1-40 File directory 1-40 File status 1-41 Selecting a file 1-41 To copy a file 1-42 To erase a file 1-42 To rename a file 1-42 To protect a file 1-42 To cancel file protection 1-42 To convert a file 1-43 File management for files on external data media 1-43

2 Manual Operation and Setup

2.1	Moving the Machine Axes	2-2
	Traversing with the machine axis direction buttons	2-2
	Traversing with an electronic handwheel	
	Using the HR 330 electronic handwheel	
	Incremental jog positioning	2-4
	Positioning with manual data input (MDI)	2-4
2.2	Spindle Speed S, Feed Rate F and Miscellaneous Functions M.	2-5
	To enter the spindle speed S	2-5
	To change the spindle speed S	
	To change the feed rate F	2-6
	To enter a miscellaneous function M	2-6
2.3	Setting the Datum Without a 3D Touch Probe	2-7
	Setting the datum in the tool axis	2-7
	To set the datum in the working plane	
2.4	3D Touch Probes	2-9
	3D Touch probe applications	2-9
	To select the touch probe functions	
	Calibrating the 3D touch probe	
	Compensating workpiece misalignment	2-12
2.5	Setting the Datum with a 3D Touch Probe	2-14
	To set the datum in an axis	2-14
	Corner as datum	2-15
	Circle center as datum	2-17
2.6	Measuring with a 3D Touch Probe	2-20
	To find the coordinates of a position on an aligned workpiece	2-20
	Finding the coordinates of a corner in the working plane	
	Measuring workpiece dimensions	2-21
	Measuring angles	2-22
2.7	Tilting the Working Plane	2-24
	Traversing reference points with tilted axes	
	Setting the datum in a tilted coordinate system	
	Position display in the tilted system	
	Limitations on working with the tilting function	
	To activate manual tilting	2-26

3 Test Run and Program Run

3.1	Test Run	3-2
	To run a program test	3-2
	To run a program test up to a certain block	
	The display functions for test run	చ-చ
3.2	Program Run	3-4
	To run a part program	3-4
	Interrupting machining	
	Moving machine axes during an interruption	
	Resuming program run after an interruption	3-6
	Mid-program startup	
	Returning to the contour	3-9
3.3	Optional Block Skip	3-10
3.4	Blockwise Transfer: Testing and Running Long Pro	ograms3-11

4 Programming

4.1	Creating Part Programs	4-2
	Layout of a program	
	Editing functions	4-3
4.2	Tools	4-5
	Setting the tool data	4-5
	Oversizes for lengths and radii: delta values	
	Entering tool data into the program	
	Entering tool data in tables	
	Tool data in tables	4-10
	Pocket table for tool changer	
	Calling tool data	
	Tool change	
	Automatic tool change: M101	4-16
4.3	Tool Compensation Values	4-17
	Effect of tool compensation values	4-17
	Tool radius compensation	
	Machining corners	4-19
4.4	Program Creation	4-20
	Defining the blank form	4-20
	To create a new part program	
4.5	Entering Tool-Related Data	4-23
	Feed rate F	4-23
	Spindle speed S	
4.6	Entering Miscellaneous Functions and Program Stop	4-25
4.7	Actual Position Capture	4-26
4.0	Later at a I Brack at O. L. L. t.	4.0-
4.8	Integrated Pocket Calculator	4-21
4.9	Marking Blocks for Optional Block Skip	4-28
4.10	Text Files	4-29
	Finding text sections	4-31
	To erase and insert characters, words and lines	
	Editing text blocks	
4.11	Creating Pallet Files	4-35
4.12	Adding Comments to the Program	4-37
	Adding comments to program blocks	4-37

5 Programming Tool Movements

5.1	General Information on Programming Tool Movements	5-2
5.2	Contour Approach and Departure	5-4
	Starting point and end point	5-4
	Tangential approach and departure	5-6
5.3	Path Functions	5-7
	General information	
	Machine axis movement under program control Overview of path functions	
5.4	Path Contours - Cartesian Coordinates	5-10
	G00: Straight line with rapid traverse	5-10
	G01: Straight line with feed rate F	
	G24: Chamfer	
	Circles and circular arcs	
	Circle center I, J, K	
	G02/G03/G05: Circular path with defined radius	
	G06: Circular path with tangential connection	
	G25: Corner rounding	
5.5	Path Contours - Polar Coordinates	5-28
	Polar coordinate origin: Pole I, J, K	5-28
	G10: Straight line with rapid traverse	
	G11: Straight line with feed rate F	
	G12/G13/G15: Circular path around pole I, J, K	
	G16: Circular path with tangential transition	
5.6	M Functions for Contouring Behavior and Coordinate Data	5-36
	Smoothing corners: M90	5-36
	Machining small contour steps: M97	
	Machining open contours: M98	
	Programming machine-referenced coordinates: M91/M92	
	Feed rate factor for plunging movements: M103 F	
	Feed rate at circular arcs: M109/M110/M111	
	Insert rounding arc between straight lines: M112 E	5-41
	tilted axes: M114	5-42
	Feed rate in mm/min on rotary axes A, B, C: M116	
	Reduce display of a rotary axis to a value less than 360°: M94	
	Optimized traverse of rotary axes: M126	
5.7	Positioning with Manual Data Input: System File \$MDI	5-45

6 Subprograms and Program Section Repeats

6.1	Subprograms	6-2
	Operating sequence	6-2
	Operating limitations	
	Programming and calling subprograms	
6.2	Program Section Repeats	6-5
	Operating sequence	6-5
	Programming notes	
	Programming and executing a program section repeat	
6.3	Program as Subprogram	6-8
	Operating sequence	6-8
	Operating limitations	
	Calling a program as a subprogram	
6.4	Nesting	6-9
	Nesting depth	6-9
	Subprogram within a subprogram	
	Repeating program section repeats	
	Repeating subprograms	
	1 0 - 1 - 0	

7 Programming with Q Parameters

/ .1	Part Families — Q Parameters in Place of Numerical Values	/-4
7.2	Describing Contours Through Mathematical Functions	7-7
	Overview	7-7
7.3	Trigonometric Functions	7-10
	Overview	7-10
7.4	If-Then Decisions with Q Parameters	7-11
	Jumps Overview	
7.5	Checking and Changing Q Parameters	7-13
7.6	Diverse Functions	7-14
	Displaying error messages Output through an external data interface Formatted output of texts and Q parameter values Reading system data Transfer to the PLC	7-16 7-17 7-18
7.7	Entering Formulas Directly	7-20
	Overview of functions	7-20
7.8	Measuring with the 3D Touch Probe During Program Run	7-23
7.9	Programming Examples	7-25
	Rectangular pocket with island, corner rounding and tangential approach Bolt hole circles Ellipse	7-27 7-29
	Hemisphere machined with end mill	7-31

8 Cycles

8.1	General Overview of Cycles	8-2
	Programming a cycle	8-2
	Dimensions in the tool axis	
8.2	Simple Fixed Cycles	8-4
	PECKING (G83)	8-4
	TAPPING with floating tap holder (G84)	
	RIGID TAPPING (G85)	
	THREAD CUTTING (G86)SLOT MILLING (G74)	
	POCKET MILLING (G74)	
	CIRCULAR POCKET MILLING (G77/G78)	
8.3	SL Cycles (Group I)	8-17
	CONTOUR GEOMETRY (G37)	8-18
	ROUGH-OUT (G57)	
	Overlapping contours	
	PILOT DRILLING (G56)	
	CONTOUR MILLING (G58/G59)	8-28
8.4	SL Cycles (Group II)	8-31
	CONTOUR DATA (G120)	
	PILOT DRILLING (G121)	
	ROUGH-OUT (G122)	
	FLOOR FINISHING (G123)SIDE FINISHING (G124)	
	CONTOUR TRAIN (G125)	
	CYLINDER SURFACE G127	
8.5	Coordinate Transformations	8-42
	DATUM SHIFT (G54)	8-43
	DATUM SHIFT with datum tables (G53)	
	MIRROR IMAGE (G28)	
	ROTATION (G73)	
	SCALING FACTOR (G72)	8-51
8.6	Other Cycles	8-53
	DWELL TIME (G04)	8-53
	PROGRAM CALL (G39)	8-53
	ORIENTED SPINDLE STOP (G36)	
	WORKING PLANE (G80)	8-55

9 External Data Transfer

9.1	Data Transfer with the TNC 426	9-2
	To copy individual files into the TNC	
	To copy multiple files into the TNC	9-3
	Copying files out of the TNC	9-3
9.2	Data Transfer with the TNC 425, TNC 415 B and TNC 407	9-4
	Selecting and transferring files	9-5
	Blockwise transfer	
9.3	Pin Layout and Connecting Cable for the Data Interfaces	9-7
	RS-232-C/V.24 Interface	9-7
	RS-422/V.11 Interface	
9.4	Preparing the Devices for Data Transfer	9-10
	HEIDENHAIN devices	9-10
	Non-HEIDENHAIN devices	9-10

10 MOD Functions

10.1	Selecting, Changing and Exiting the MOD Functions	10-3
10.2	Software Numbers and Option Numbers	10-3
10.3	Code Numbers	10-3
10.4	Setting the External Data Interfaces	10-4
	Setting the RS-232 interface Setting the RS-422 interface Selecting the OPERATING MODE Setting the BAUD RATE ASSIGN	10-4 10-4 10-4
10.5	Machine-Specific User Parameters	10-6
10.6	Showing the Workpiece in the Working Space	10-6
	Overview of functions	10-7
10.7	Position Display Types	10-8
10.8	Unit of Measurement	10-9
10.9	Programming Language for \$MDI	10-9
10.10	Selecting the Axes for Generating L Blocks (conversational programming only)	10-9
10.11	Axis Traverse Limits	10-10
10.12	HELP files	10-11

11 Tables, Overviews and Diagrams

General User Parameters	11-2
Electronic handwheel	11-15
Miscellaneous Functions (M Functions)	11-16
Miscellaneous functions with predetermined effect	11-16
Preassigned Q Parameters	11-19
Features, Specifications and Accessories	11-21
Accessories	11-24
TNC Error Messages	11-26
TNC error messages during programming	11-26
Address Letters (ISO)	11-31
Parameter definitions	11-34
	Input possibilities for machine parameters Selecting general user parameters External data transfer 3D touch probes and digitizing TNC displays, TNC editor Machining and program run Electronic handwheel Miscellaneous Functions (M Functions) Miscellaneous functions with predetermined effect Vacant miscellaneous functions Preassigned Q Parameters Features, Specifications and Accessories Accessories TNC Error Messages TNC error messages during programming TNC error messages during test run and program run Address Letters (ISO) Parameter definitions

1.1 The TNC 400 Series

The TNCs are shop-floor programmable contouring controls for boring machines, milling machines and machining centers with up to 5 axes. They also feature oriented spindle stop.

Two operating modes are always active simultaneously: one for machine movements (machining modes) and one for programming or program testing (programming modes).

TNC 426

The TNC 426 PA features digital control of machine axis speed. This provides high geometrical accuracy, even with complex workpiece surfaces and at high machining speeds.

An integrated 170 megabyte hard disk provides storage for programs that were created on external devices. The TNC 426 also offers an on-screen pocket calculator.

TNC 425

The TNC 425 also features digital control of machine axis speed. This results in high geometrical accuracy, even with complex workpiece surfaces and at high machining speeds.

TNC 415 B

The TNC 415 B uses an analog method of speed control in the drive amplifier. All the programming and machining functions of the TNC 425 are also available on the TNC 415 B.

TNC 407

The TNC 407 uses an analog method of speed control in the drive amplifier. Some functions are not available on the TNC 407, such as:

- Graphics during program run
- Tilting the machining plane
- · Linear movement in more than three axes

Technical differences between the TNCs

	TNC 426 PA	TNC 426 CA	TNC 425	TNC 415 B	TNC 407
Speed control	Digital	Analog	Digital/analo	g Analog	Analog
Block processing time	4 ms	4 ms	4 ms	4 ms	24 ms
Control loop cycle time: Contouring interpolation	3 ms	3 ms	3 ms	2 ms	6 ms
Control loop cycle time: Fine interpolation	0.6 ms		0.6 ms	0.6 ms	
Program memory	170 M byte (hard disk)	170 M byte (hard disk)	256 K byte	256 K byte	128 K byte
Input resolution	0.1 μm	0.1 µm	0.1 μm	0.1 µm	1 μm

The TNC 400 Series

Visual display unit and keyboard

The 14-inch color monitor displays all the information necessary for effective use of the TNC's capabilities.

The keys are grouped on the keyboard according to function. This makes it easier to create programs and to use the TNC's functions.

Programming

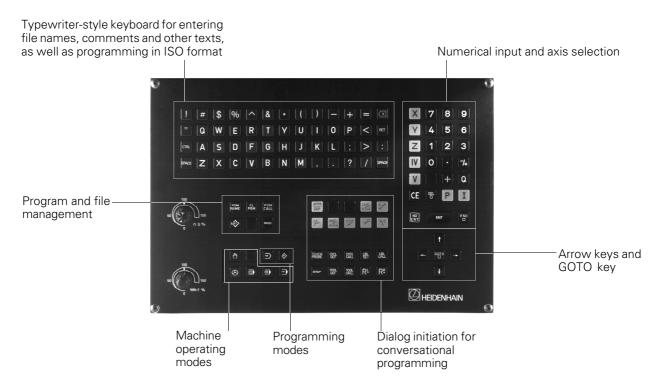
The TNCs are programmed in ISO format.

It is also possible to program in easy-to-understand HEIDENHAIN conversational format (a separate User's Manual is available for this).

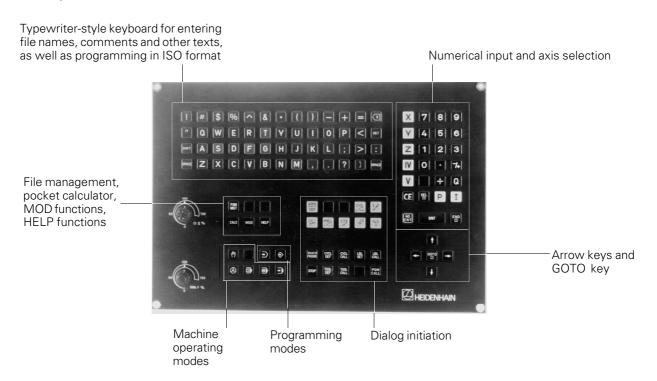
Graphics

Workpiece machining can be graphically simulated both during machining (except on TNC 407) or before actual machining. Various display modes are available.

Compatibility


The TNCs can execute all part programs written on HEIDENHAIN TNC 150 B controls or later.

The TNC 400 Series


Keyboard

The keys on the TNC keyboard are marked with symbols and abbreviations that make them easy to remember. They are grouped according to the their functions. The functions of the individual keys are described in the front cover fold-out of the TNC user's manual. A description of machine panel buttons is provided in the manual for your machine tool.

The keyboard of TNC 407, TNC 415 and TNC 425 controls

The keyboard of TNC 426 controls

Visual display unit

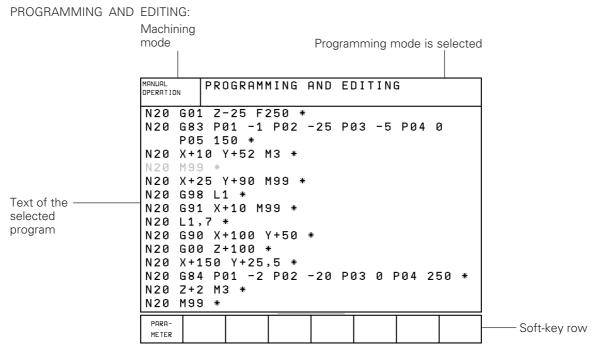
The TNC 400 Series

Headline

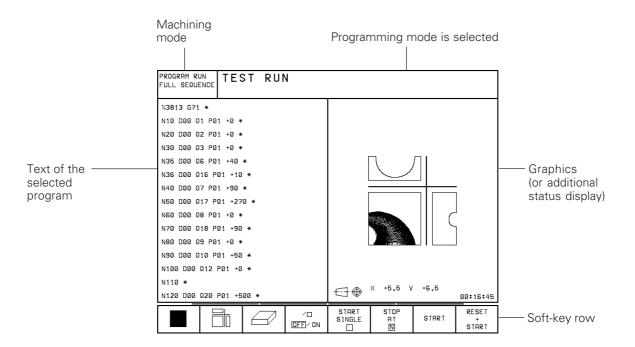
The two selected TNC modes are shown in the screen headline: the machining mode to the left and the programming mode to the right. The currently active mode is displayed in the larger box, where dialog prompts and TNC messages also appear.

Soft keys

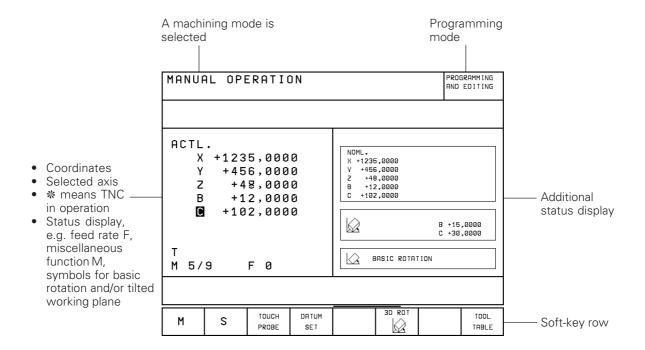
The soft keys select the functions shown in the soft-key row immediately above them. The shift keys to the right and left call up additional soft-key rows. Colored lines above the soft-key row indicate the number of available rows. The line representing the active row is highlighted.

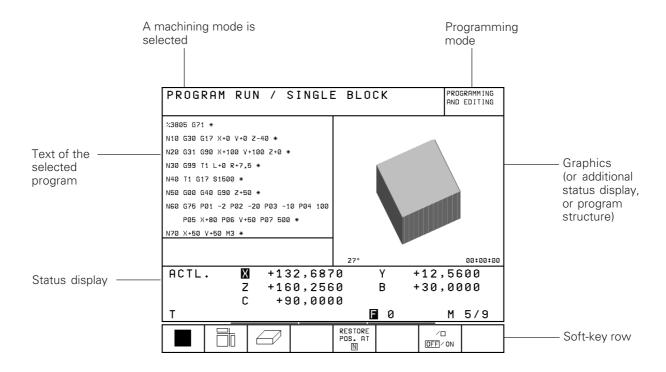

Screen layout

You can select the type of display on the TNC screen by pressing the SPLIT SCREEN key and one of the soft keys listed below. Depending on the active mode of operation, you can select:


Mode of operation	Screen layout	Soft key
MANUAL ELECTRONIC HANDWHEEL	Positions	POSITION
	Left: positions Right: STATUS	POSITION + STATUS
POSITIONING WITH MDI	Program blocks	PGM
	Left: program blocks Right: STATUS	PGM + STATUS
PROGRAM RUN/FULL SEQUENCE PROGRAM RUN/SINGLE BLOCK TEST RUN	Program blocks	PGM
	Left: program blocks Right: program structure (conversational programming only)	PGM + SECTION
	Left: program blocks Right: STATUS	PGM + STATUS
	Left: program blocks Right: graphics	PGM + GRAPHICS
	Graphics	GRAPHICS
PROGRAMMING AND EDITING	No screen selection possible, the TNC displays program blocks only	

1.1 The TNC 400 Series


Screen layout of modes


TEST RUN:

MANUAL OPERATION and ELECTRONIC HANDWHEEL modes:

PROGRAM RUN/FULL SEQUENCE, PROGRAM RUN/SINGLE BLOCK


The TNC 400 Series

TNC Accessories

3D Touch Probe Systems

The TNC provides the following features when used in conjunction with a HEIDENHAIN 3D touch probe:

- Electronic workpiece alignment (compensation of workpiece misalignment)
- Datum setting
- Measurement of the workpiece during program run
- Digitizing 3D surfaces (optional, only available with conversational programming)
- Measuring tools with the TT 120 touch probe (only available)

TS 220 and TS 630 3D-touch probes Fig. 1.6:

Electronic Handwheels

Electronic handwheels facilitate precise manual control of the axis slides. Similar to a conventional machine tool, the machine slide moves in direct relation to the rotation of the handwheel. A wide range of traverses per handwheel revolution is available.

Portable handwheels such as the HR 330 are connected via cable to the TNC. Integral handwheels such as the HR 130 are built into the machine control panel. An adapter permits connection of up to three handwheels.

Your machine manufacturer can tell you more about the handwheel configuration of your machine.

HR 330 electronic handwheel Fig. 1.7:

Introduction

This chapter discusses the following topics:

- What is NC?
- The part program
- Programming
- Reference system
- Cartesian coordinate system
- Additional axes
- Polar coordinates
- · Setting the pole
- Datum setting
- Absolute workpiece positions
- Incremental workpiece positions
- Programming tool movements
- Position encoders
- Reference marks

What is NC?

NC stands for **N**umerical **C**ontrol, that is, the operation of a machine tool by a series of coded instructions comprised of numbers. Modern controls such as the TNC have a built-in computer for this purpose and are therefore called CNC (Computerized Numerical Control).

The part program

The part program is a complete list of instructions for machining a part. It contains such information as the target position of a tool movement, the path function (how the tool should move toward the target position) and the feed rate. Information on the radius and length of the tool, spindle speed and tool axis must also be included in the program.

Programming

ISO programming is partially dialog-guided. The programmer is free to enter the individual commands (words) in each block in any sequence (except with G90/G91). The commands are automatically sorted by the TNC when the block is concluded.

Reference system

In order to define positions, a reference system is necessary. For example, positions on the earth's surface can be defined "absolutely" by their geographic coordinates of longitude and latitude. The word coordinate comes from the Latin word for "that which is arranged." The network of horizontal and vertical lines around the globe constitute an absolute reference system — in contrast to the relative definition of a position that is referenced to a known location.

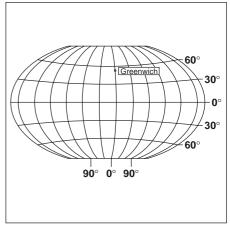


Fig. 1.8: The geographic coordinate system is an absolute reference system

Cartesian coordinate system

On a TNC-controlled milling machine, workpieces are normally machined according to a workpiece-based Cartesian coordinate system (a rectangular coordinate system named after the French mathematician and philosopher Renatus Cartesius, who lived from 1596 to 1650). The Cartesian coordinate system is based on three coordinate axes X, Y and Z which are parallel to the machine guideways.

The figure to the right illustrates the "right-hand rule" for remembering the three axis directions: the middle finger is pointing in the positive direction of the tool axis from the workpiece toward the tool (the Z axis), the thumb is pointing in the positive X direction, and the index finger in the positive Y direction.

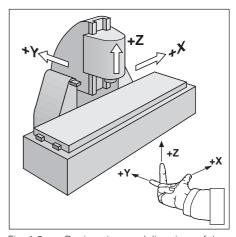


Fig. 1.9: Designations and directions of the axes on a milling machine

Additional axes

The TNC can control the machine in more than three axes. Axes **U**, **V** and **W** are secondary linear axes parallel to the main axes X, Y and Z, respectively (see illustration). **Rotary axes** are also possible, and are designated as **A**, **B** and **C**.

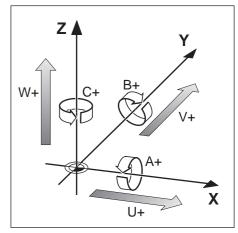


Fig. 1.10: Direction and designation of additional axes

Polar coordinates

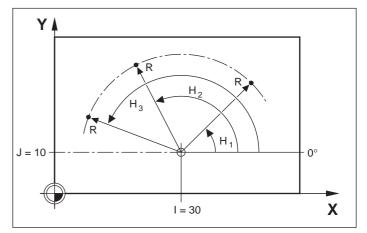
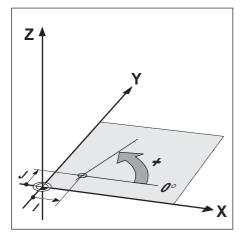
Although the Cartesian coordinate system is especially useful for parts whose dimensions are mutually perpendicular, in the case of parts containing circular arcs or angles it is often simpler to give the dimensions in polar coordinates. While Cartesian coordinates are three-dimensional and can describe points in space, polar coordinates are two-dimensional and describe points in a plane.

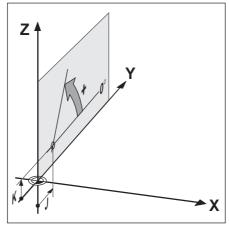
Polar coordinates have their datum at a **pole I, J, K** from which a position is measured in terms of its distance from the pole and the angle of its position in relation to the pole.

You could think of polar coordinates as the result of a measurement using a scale whose zero point is fixed at the datum and which you can rotate to different angles in the plane around the pole.

The positions in this plane are defined by the

- **Polar Radius R**, the distance from the circle center I, J to the position, and the
- **Polar Angle H**, the size of the angle between the reference axis and the scale.


Fig. 1.11: Identifying positions on a circular arc with polar coordinates

Setting the pole

The pole is set by entering two Cartesian coordinates. These coordinates also determine the reference axis for the polar angle H.

Coordinates of the pole	Angle reference axis
IJ	+X
J K	+Y
ΚΙ	+Z

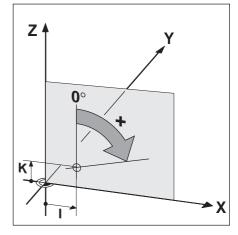


Fig. 1.12: Polar coordinates and their associated reference axes

Datum setting

The workpiece drawing identifies a certain point on the workpiece (usually a corner) as the "absolute datum" and perhaps one or more other points as relative datums. The datum setting procedure establishes these points as the origin of the absolute or relative coordinate system. The workpiece, which is aligned with the machine axes, is moved to a certain position relative to the tool and the display is set either to zero or to another appropriate value (e.g., to compensate the tool radius).

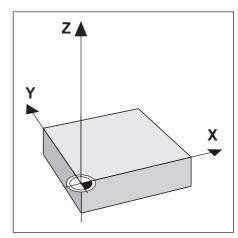
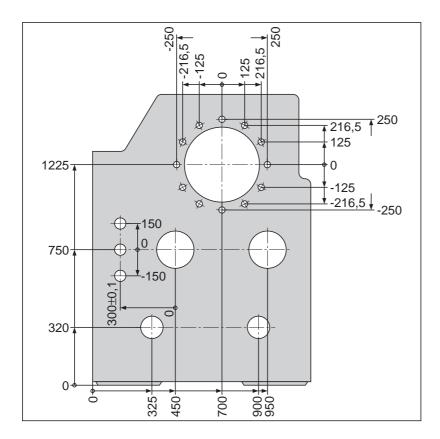



Fig. 1.13: The workpiece datum represents the origin of the Cartesian coordinate system

Example:

Drawing with several relative datums (ISO 129 or DIN 406 Part 11, fig. 171)

Example:

Coordinates of point ①:

X = 10 mm

Y = 5 mm

Z = 0 mm

The datum of the Cartesian coordinate system is located 10 mm from point 1 on the X axis and 5 mm from it on the Y axis.

The 3D Touch Probe System from HEIDENHAIN is an especially convenient and efficient way to find and set datums.

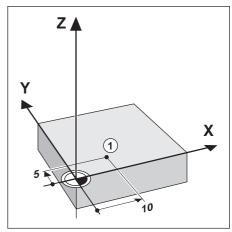


Fig. 1.14: Point ① defines the coordinate system

Absolute workpiece positions

Each position on the workpiece is uniquely defined by its absolute coordinates.

Example:

Absolute coordinates of position 1:

X = 20 mm

Y = 10 mm

Z = 15 mm

If you are drilling or milling a workpiece according to a workpiece drawing with absolute coordinates, you are moving the tool **to** the value of the coordinates.

Fig. 1.15: Position definition through absolute coordinates

Incremental workpiece positions

A position can also be referenced to the preceding nominal position. In this case the relative datum is always the last programmed position. Such coordinates are referred to as **incremental** coordinates (increment = increase). They are also called chain dimensions (since the positions are defined as a chain of dimensions). Incremental coordinates are designated with the prefix I.

Example:

Incremental coordinates of position 3 referenced to position 2

Absolute coordinates of position ②:

X = 10 mm

Y = 5 mm

Z = 20 mm

Incremental coordinates of position 3:

IX = 10 mm

IY = 10 mm

IZ = -15 mm

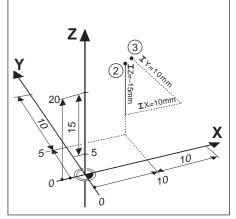


Fig. 1.16: Position definition through incremental coordinates

If you are drilling or milling a workpiece according to a drawing with incremental coordinates, you are moving the tool by the value of the coordinates.

An incremental position definition is therefore a specifically *relative* definition. This is also the case when a position is defined by the distance-to-go to the nominal position. The distance-to-go has a negative sign if the target position lies in the negative axis direction from the actual position.

The polar coordinate system can also express both types of dimensions:

- **Absolute polar coordinates** always refer to the pole (I, J) and the reference axis.
- **Incremental polar coordinates** always refer to the last nominal position of the tool.

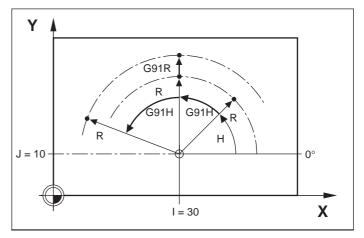
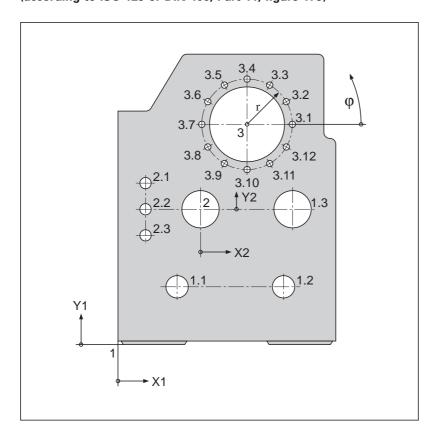



Fig. 1.17: Incremental dimensions in polar coordinates (designated by G91)

Example:

Workpiece drawing with coordinate dimensioning (according to ISO 129 or DIN 406, Part 11; figure 179)

		Dimensions in mm				
Casudinata		Coordinates				
Coordinate origin	Pos.	X1 X2	Y1 Y2	r	φ	d
1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3	1 1.1 1.2 1.3 2 3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	0 325 900 950 450 700 -300 -300	0 320 320 750 750 1225 150 0 -150	250 250 250 250 250 250 250 250 250 250	0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°	□ 120 H7 ∅ 120 H7 ∅ 120 H7 ∅ 200 H7 ∅ 200 H7 ∅ 400 H8 ∅ 50 H11 ∅ 50 H11 ∅ 50 H11 ∅ 26 ∅ 26 ∅ 26 ∅ 26 ∅ 26 ∅ 26 ∅ 26 ∅ 26

Programming tool movements

During workpiece machining, an axis position is changed either by movement of the tool or movement of the machine table on which the workpiece is fixed.

You always program as if the tool moves and the workpiece remains stationary.

If the machine table moves, the corresponding axes are identified on the machine operating panel with a prime mark (e.g., X', Y'). The programmed direction of such axis movement always corresponds to the direction of tool movement relative to the workpiece but in the opposite direction.

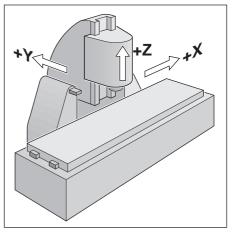


Fig. 1.18: On this machine the tool moves in the Y and Z axes, and the table moves in the +X' axis.

Position encoders

Position encoders convert the movement of the machine axes into electrical signals. The control constantly evaluates these signals to calculate the actual position of the machine axes.

If there is an interruption in power, the calculated position will no longer correspond to the actual position. When power is restored, the TNC can re-establish this relationship.

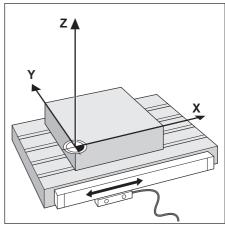


Fig. 1.19: Linear position encoder, here for the X axis

Reference marks

The scales of the position encoders contain one or more reference marks. When a reference mark is crossed over, it generates a signal which identifies that position as the machine axis reference point. With the aid of this reference mark the TNC can re-establish the assignment of displayed positions to machine axis positions.

If the position encoders feature **distance-coded** reference marks, each axis need only move a maximum of 20 mm (0.8 in.) for linear encoders, and 20° for angle encoders.

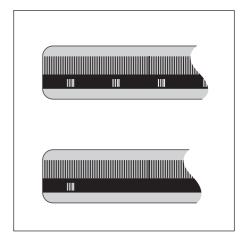


Fig. 1.20: Linear scales: with distance-coded reference marks (upper illustration) and one reference mark (lower illustration)

1.3 Switch-On

Switch-on and traversing the reference points can vary depending on the individual machine tool. Your machine manual provides more information on these functions.

Switch on the TNC and machine tool. The TNC automatically initiates the following dialog:

MEMORY TEST

The TNC memory is automatically checked.

POWER INTERRUPTED TNC message indicating that the power was interrupted. Clear the message.

TRANSLATE PLC PROGRAM

The PLC program of the TNC is translated automatically.

RELAY EXT. DC VOLTAGE MISSING		
I	Switch on the control voltage. The TNC checks the EMERGENCY OFF circuit.	

MANUAL OPERATION	
TRAVERSE REFERENCE POINTS	
I	Move the axes over the reference marks in the displayed sequence: For each axis press the START key, or
X Y	Cross the reference points in any sequence: Press the machine axis direction button for each axis, until the reference point has been traversed.

The TNC is now ready for operation in the MANUAL OPERATION mode.

The reference points need only be traversed if the machine axes are to be moved. If you intend only to write, edit or test programs, you can select the PROGRAMMING AND EDITING or TEST RUN modes of operation immediately after switching on the control voltage. The reference points can then be traversed later by pressing the PASS OVER REFERENCE soft key in the MANUAL mode of operation.

Traversing reference points with a tilted working plane

In a tilted coordinate system, the reference points are traversed by pressing the machine axis direction buttons. To enable this function, set TILT WORKING PLANE to ACTIVE in the MANUAL OPERATION mode (see page 2-26). The TNC then interpolates the tilted axes as soon as the corresponding axis direction buttons are pressed.

The NC START key is disabled; pressing this key will display an error message.

The angular values entered in the menu must correspond to the actual angle of the tilt axis.

1.4 Graphics and Status Displays

In the program run operating modes (except on TNC 407) and test run operating modes, the TNC provides the following three display modes:

- Plan view
- Projection in three planes
- 3D view

The display mode is selected with the soft keys.

On the TNC 415 B, TNC 425 and TNC 426, workpiece machining can also be graphically simulated in real time.

The TNC graphic depicts the workpiece as if it were being machined by a cylindrical end mill. If tool tables are used, a spherical cutter can also be depicted (see page 4-10).

The graphics window will not show the workpiece if

- · the current program has no valid blank form definition
- no program is selected

With machine parameters MP7315 to MP7317 a graphic is generated even if no tool axis is defined or moved.

The graphics cannot show rotary axis movements (error message).

Graphics during program run

A graphical representation of a running program is not possible if the microprocessor of the TNC is already occupied with complicated machining tasks or if large areas are being machined.

Example:

Stepover milling of the entire blank form with a large tool.

The TNC interrupts the graphics and displays the text "ERROR" in the graphics window. The machining process is continued, however.

Plan view

Graphics and Status Displays

The depth of the workpiece surface is displayed according to the principle "the deeper, the darker."

The number of displayable depth levels can be selected with the soft keys:

• TEST RUN mode: 16 or 32 • PROGRAM RUN modes: 16 or 32

Plan view is the fastest of the three graphic display modes.

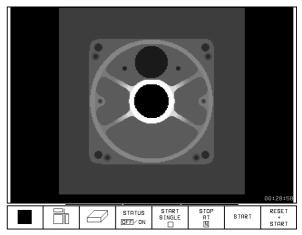
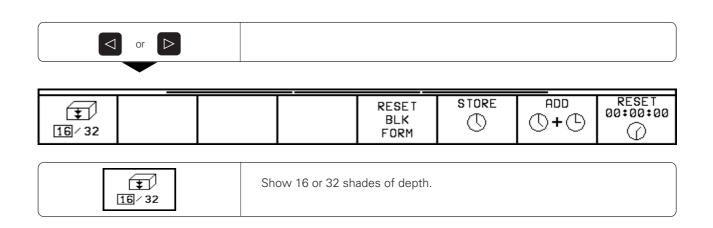



Fig. 1.21: TNC graphics, plan view

Projection in 3 planes

Similar to a workpiece drawing, the part is displayed with a plan view and two sectional planes. A symbol to the lower left indicates whether the display is in first angle or third angle projection according to ISO 6433 (selected with MP 7310).

Details can be isolated in this display mode for magnification (see page 1–25).

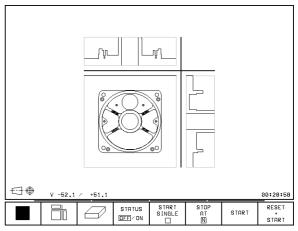


Fig. 1.22: TNC graphics, projection in three planes

Shifting planes

The sectional planes can be shifted as desired. The positions of the sectional planes are visible during shifting.

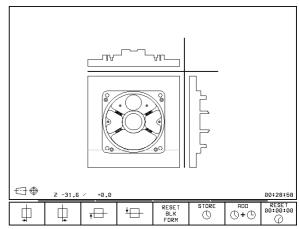
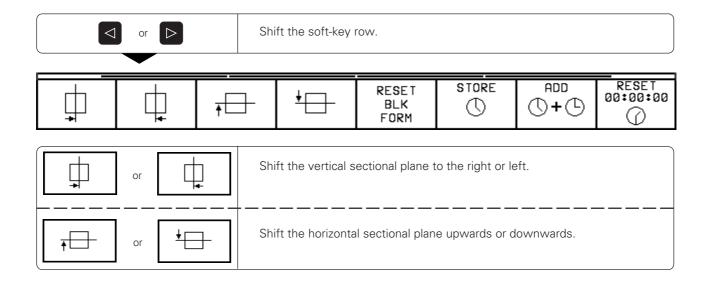



Fig. 1.23: Shifting sectional planes

Graphics and Status Displays

Cursor position during projection in 3 planes

The TNC shows the coordinates of the cursor position at the bottom of the graphics window. Only the coordinates of the working plane are shown.

This function is activated with machine parameter MP 7310.

Cursor position during detail magnification

During detail magnification, the TNC displays the coordinates of the axis that is currently being moved.

The coordinates describe the area determined for magnification. To the left of the slash is the smallest coordinate of the detail in the current axis, to the right is the largest.

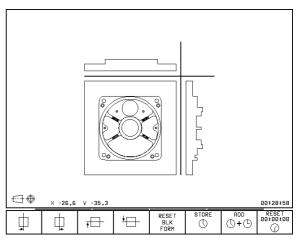


Fig. 1.24: The coordinates of the cursor position are displayed to the lower left of the graphic

3D view

Here the workpiece is displayed in three dimensions, and can be rotated about the vertical axis.

The shape of the workpiece blank can be depicted by a frame overlay at the beginning of the graphic

In the TEST RUN mode of operation you can isolate details for magnification.

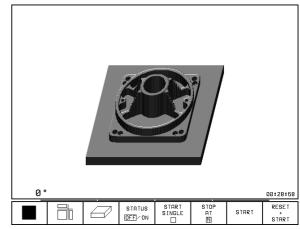
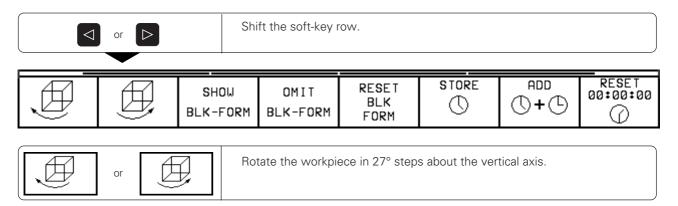



Fig. 1.25: 3D view

To rotate the 3D view:

Graphics and Status Displays

The current angular attitude of the display is indicated at the lower left of the graphic.

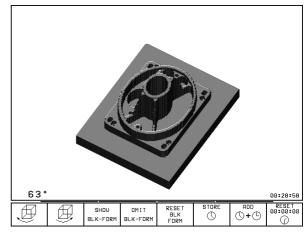


Fig. 1.26: Rotated 3D view

To switch the frame overlay display on/off:

1.4 Graphics and Status Displays

Magnifying details

You can magnify details in the TEST RUN mode of operation in the following display modes:

- projection in three planes
- 3D view

provided that the graphic simulation is stopped. A detail magnification is always effective in all three display modes.

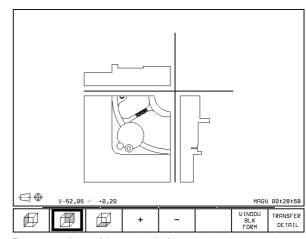
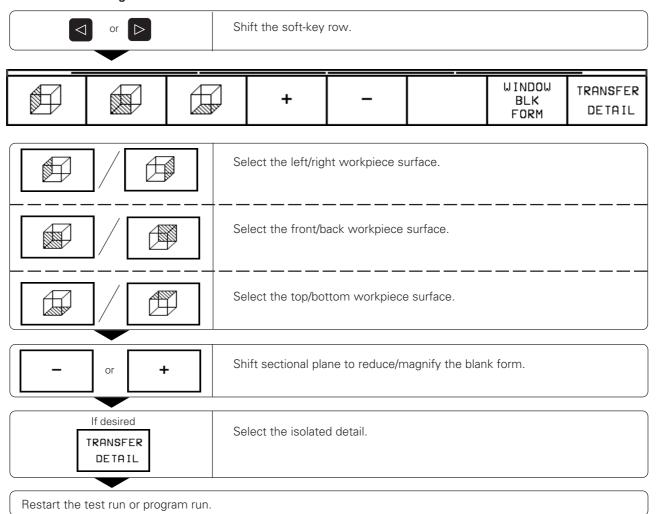



Fig. 1.27: Magnifying a detail of a projection in three planes

To select detail magnification:

If a graphic display is magnified, this is indicated with MAGN at the lower right of the graphics window. If the detail is not magnified with TRANSFER DETAIL, you can make a test run of the shifted sectional planes.

If the workpiece blank cannot be further enlarged or reduced, the TNC displays an error message in the graphics window. The error message disappears when the workpiece blank is enlarged or reduced.

Repeating graphic simulation

A part program can be graphically simulated as often as desired, either with the complete workpiece blank or with a detail of it.

Function	Soft key
Restore workpiece blank as it was last shown	RESET BLK FORM
Show the complete BLK FORM as it appeared before a detail was magnified via TRANSFER DETAIL	WINDOW BLK FORM

The WINDOW BLK FORM soft key will return the blank form to its original shape and size, even if a detail has been isolated and not yet magnified with TRANSFER DETAIL.

Measuring the machining time

At the lower right of the graphics window the TNC shows the calculated machining time in

hours: minutes: seconds (maximum 99: 59: 59)

- Program run:
 - The clock counts and displays the time from program start to program end. The clock stops whenever machining is interrupted.
- Test run:

The clock shows the time which the TNC calculates for the duration of tool movements.

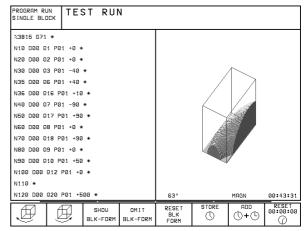
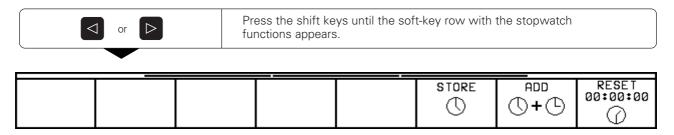



Fig. 1.28: The calculated machining time is shown at the lower right of the workpiece graphic

To activate the stopwatch function:

The soft keys available to the left of the stopwatch function depend on the selected display mode.

1.4 Graphics and Status Displays

Stopwatch functions	Soft key
Store displayed time	STORE
Show the sum of the stored time and the displayed time	ADD ()+()
Clear displayed time	RESET 00:00:00

Status displays

During a program run mode of operation the status display contains the current coordinates and the following information:

- Type of position display (ACTL, NOML, ...)
- Number of the current tool T
- Tool axis
- Spindle speed S
- Feed rate F
- Active M functions
- "Control in operation" symbol: *
- "Axis is locked" symbol:
- Axis can be moved with the handwheel:
- Axes are moving in a tilted working plane:
- Axes are moving under a basic rotation:

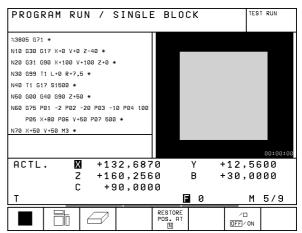
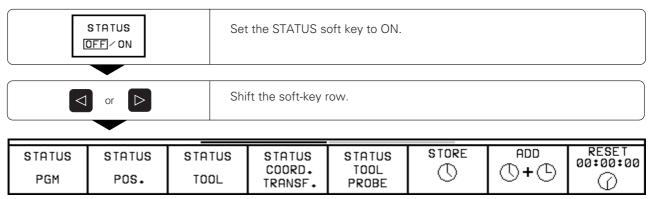
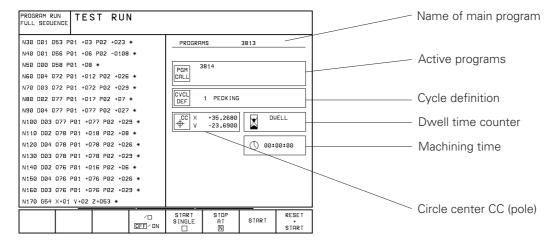
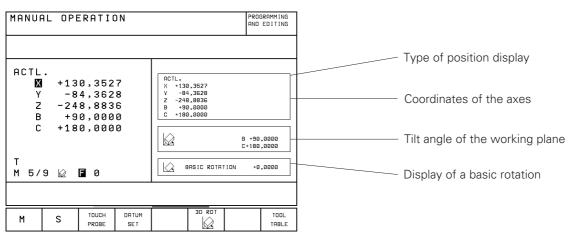



Fig. 1.29: Status display in a program run mode of operation

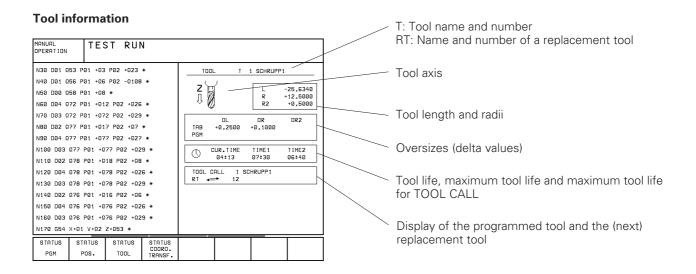
Additional status displays

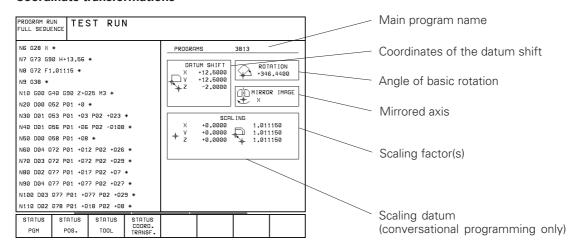
The additional status displays contain further information on the program run.

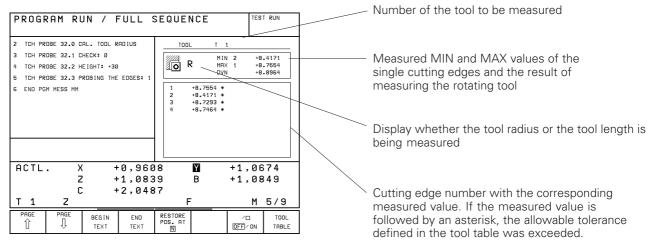

To select additional status displays:


Graphics and Status Displays

Additional status display	Soft key
General program information	STATUS PGM
Positions and coordinates	STATUS POS.
Tool information	STATUS TOOL
Coordinate transformations	STATUS COORD. TRANSF.
Tool measurement	STATUS TOOL PROBE

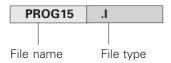

General program information


Positions and coordinates


Graphics and Status Displays

Coordinate transformations

Tool measurement (only available with conversational programming)



The functions described in this chapter are valid for the hard disk of the TNC and for the FE1 interface mode (see page 10-4). If you wish to use these functions with a personal computer, you will need the HEIDENHAIN data transfer software TNC.EXE.

Programs, texts and tables are written as **files** and stored on the TNC's hard disk.

File identification:

To open a new file you must enter a file name consisting of up to eight characters (letters and numbers).

You can manage any number of files on the TNC's hard disk. Their total size, however, must not exceed 170 M byte.

To ensure that you can easily find your files, we recommend that you organize your hard disk into **directories**. Directories work like drawers in a filing cabinet: They enable you to save your files in groups according to some system. You could set up your directories according to job number, for example. The name of a directory can have up to eight characters (letters and numbers).

If you divide a directory up into further directories, these subordinate directories are called **subdirectories**. The TNC shows subdirectories at the right of and below their parent directories (see page 1-31).

les in the TNC	Туре
rograms	
in HEIDENHAIN plain language dialog	.H
in ISO format	.1
ables for	
Tools	.T
Pallets	.P
Datums	.D
Points (digitizing range for measuring	
touch probe)	.PNT
exts as	
ASCII files	.A

Fig. 1.35: Overview of file types in the TNC 426

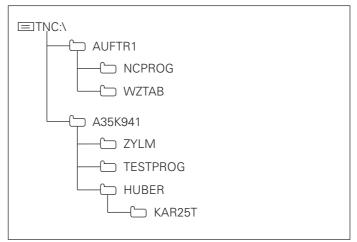
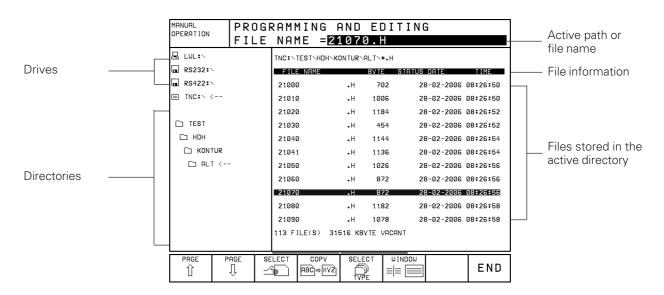


Fig. 1.36: Directories on the hard disk of the TNC

Data security


We recommend to save newly written programs and files on a PC at regular intervals. You can do this with the cost-free backup program TNCBACK.EXE from HEIDENHAIN.

In addition, you need a floppy disk on which all machine-specific data, such as PLC program, machine parameters, etc., are stored. Please contact your machine manufacturer for more information on both the backup program and the floppy disk.

Saving the entire hard disk (170 M bytes) may take several hours. In this case, it is a good idea to save the data outside of work hours, e.g. during the night.

Calling the file manager

Press the PGM MGT key to call the file manager. The screen will then look something like this:

With the WINDOW soft key you can change the screen layout (see page 1-34). Whenever you press the PGM MGT key, the TNC shows the screen layout that you last selected.

Drives: File information: Im RS232:\ • FILE NAME: RS232 interface Files stored in the active directory • BYTES: Size of the file in bytes Ind RS422 ₺ \ • STATUS: The following letters may appear in the STATUS RS422 interface column: ■ TNC:\ <---</p> E: File is selected in the PROGRAMMING AND TNC disk drive EDITING operating mode S: File is selected in the TEST RUN operating The active drive is shown in a different color. mode The drive symbol depends on the selected M: File is selected in a program run operating interface mode (see page 10-4). mode P: File is protected against editing and erasure **Directories:** IN: File contains inch dimensions W: File was incompletely transferred to □ NK external storage and cannot be run • DATE: Date the file was last changed • TIME: C KLART <--Time the file was last changed □ 3D BOHREN ☐ KDNET

The TNC shows a subdirectory at the right of and below its parent directory. The active directory is depicted in a different color and is indicated by an open file symbol.

To select the drive:

- ➤ Press the leftward arrow key to move the highlight bar to the active directory (left in the screen).
- ➤ Press the upward arrow key to move the highlight bar to the desired drive
- Once the highlight bar is on desired drive, confirm your selection with FNT

To create a new directory:

- > Select the drive.
- ➤ Press the downward arrow key to move the highlight to the directory under which you wish to open a new directory.
- ➤ Enter the name of the new directory (up to eight characters) and confirm with ENT.
- ➤ Answer the TNC dialog question with the YES soft key if you wish to create a new directory, or abort with NO.

To select the directory:

- > Select the drive.
- ➤ Press the downward arrow key to move the highlight to the desired directory. In the right screen window, the TNC automatically displays the files stored in this directory.

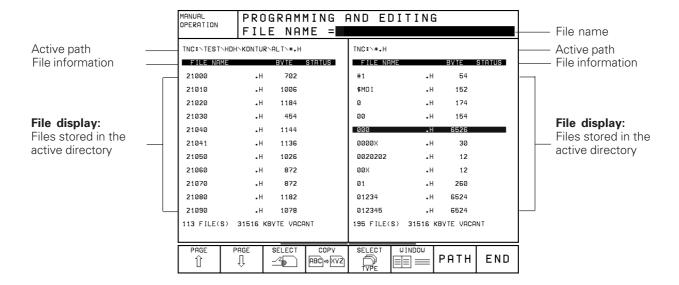
or

- ➤ Press the leftward arrow key to move the highlight to the active directory (left in the screen).
- ➤ Enter the path directly with the ASCII keyboard and confirm with ENT.

To select the file:

- > Select the drive.
- ➤ Select the directory.
- ➤ Press the rightward arrow key to move the highlight to the file directory.
- ➤ Press the SELECT TYPE soft key to choose the file type (see page 1-36).
- Press the downward or upward arrow key to move the highlight to the desired file.
- ➤ Once the highlight is on the desired file, confirm your selection with ENT.

or


- ➤ Press the LAST FILES soft key. The TNC then displays the last ten files you selected.
- Press the downward or upward arrow key to move the highlight to the desired file.
- ➤ Once the highlight is on the desired file, confirm your selection with ENT.

or

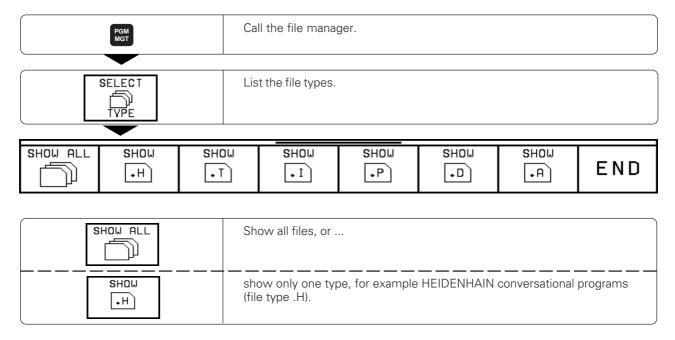
- ➤ Select the drive.
- ➤ Select the directory.
- ➤ Enter the file name directly with the ASCII keyboard.

Functions for selecting files	Key / Soft key
Move the highlight bar upward to the desired file	1
Move the highlight bar downward to the desired file	•
Move pagewise up through the file directory	PAGE Î
Move pagewise down through the file directory	PAGE ↓
Select the highlighted file	SELECT

With the WINDOW soft key you can change the screen layout to show the contents of two different directories, one in each half of the screen. Use this setting for copying files between directories and for importing or exporting files. Press the WINDOW soft key again if you wish to return to the other layout.

To select the directory:

- ➤ Press the leftward or rightward arrow key to switch to the window in which you wish to select a new directory.
- ➤ Press the PATH soft key to switch to the path display. The TNC then shows the drives (active drive is depicted in a different color) and the active directory (also depicted in a different color).
- ➤ If you wish to change drives, press the upward arrow key to move the highlight to the new drive.
- ➤ Once the highlight is on the desired drive, confirm your selection with ENT. The TNC automatically returns to the file display. The window then shows the files stored in the uppermost directory of the selected drive.
- ➤ If you wish to select a subdirectory, press the PATH soft key to return to the path display.
- Press the downward arrow key to move the highlight to the desired directory.
- ➤ Once the highlight is on the desired directory, confirm your selection with ENT. The TNC then automatically switches back to the file window containing the files stored in the selected directory.


Functions for file management

1.5 File Management on the TNC 426

The file management functions are selected by soft key after pressing PMG MGT in the PROGRAMMING AND EDITING mode of operation. The following functions are available:

Function	Soft key
Select a file type	SELECT TVPE
Copy a file (and convert)	COPY (ABC) ⇒ XYZ
Copy a directory	COPY DIR
Erase a file or directory	DELETE
Rename a file	RENAME ABC = XYZ
Tag files	TAG
Read the tree structure of an external device and show it on the TNC screen	E SHOW TREE
Display the last ten files that were selected	LAST FILES
Protect a file	PROTECT 👚
Cancel file protection	UNPROTECT 💮 률
Convert FK program	CONVERT FK->H

Selecting file types

To copy individual files:

You must be in the PROGRAMMING AND EDITING mode of operation.

- ➤ Call the file manager with PGM MGT.
- ➤ Select the directory containing the file you wish to copy. Move the highlight to the desired file.
- ➤ Press the COPY soft key.
- ➤ Type the new file name into the highlight in the screen headline.
- ➤ Press the ENT key or the EXECUTE soft key to copy the file into the active directory. The original file is retained.
- ➤ Close the file manager with END.

- If you are copying tables, you can overwrite individual lines or columns in the target table with the REPLACE FIELDS soft key. Prerequisites:
 - The target table must exist.
 - The file to be copied must only contain the columns (or lines) you want to replace.
- You can also copy an entire directory together with its subdirectories. Simply place the highlight on the directory you wish to copy and press the COPY DIR soft key. Then proceed as described above in the section "To copy individual files".

To copy several files into another directory:

You must be in the PROGRAMMING AND EDITING mode of operation. To select the functions for copying several files, press the TAG soft key:

Functions for tagging/copying files	Soft key
Tag one file	TAG FILE
Tag all files in the directory	TAG ALL FILES
Untag one file	UNTAG FILE
Untag all files in the directory	UNTAG ALL FILES
Copy the tagged files	COPY TAG
When overwriting several files, confirm each file separately	CONF IRM

- > Call the file manager with PGM MGT.
- Arrange the screen layout with the WINDOW soft key to show file names in both halves of the screen.
- ➤ In the right screen half, use the PATH soft key to select the directory into which you wish to copy the files.
- ➤ Move the highlight to the left screen half.
- ➤ In the left screen half, use the PATH soft key to select the directory containing the files that you want to copy.
- ➤ Move the highlight to the first file you want to copy.
- ➤ Shift the soft-key row.
- ➤ Select the file tagging function with the TAG soft key.
- ➤ Press the TAG FILE soft key. The TNC tags the highlighted file with an arrow at its left and shows it in a different color.
- ➤ Move the highlight to the next file you want to copy. Tag the file with TAG FILE. Tag all files you want to copy in this way.
- ➤ Press the COPY TAG soft key and confirm with ENT. Die TNC copies the tagged files into the active directory in the right screen half. The original files are retained.
- ➤ Close the file manager with END.

- If the target directory contains files with the same file names as the files to be copied, the TNC will ask you whether you want to overwrite these files. Press the YES soft key to overwrite all files, or press the CONFIRM soft key to confirm each file separately before overwriting it. If you want to overwrite a protected file, you can suspend file protection during the copying process.
- When you are converting files with the TAG function, you can also use wildcards (*). By copying into *.A, for example, you can convert all tagged files into ASCII text files.
- If you press the COPY TAG soft key with the screen layout showing drives/directories to the left and file names to the right, the TNC asks you for a DESTINATION DIRECTORY. Enter the complete path name, including the drive.

To erase a file:

- ➤ Call the file manager with PGM MGT.
- > Select the directory containing the file you wish to erase. Move the highlight to the desired file.
- > Shift the soft-key row.

File Management on the TNC 426

- ➤ Press the DELETE soft key.
- ➤ Press the YES soft key to delete the file, or abort the deleting function with the NO soft key.
- ➤ Close the file manager with END.

You can also erase directories. Simply move the highlight to a directory instead of a file and proceed as described above. Delete all files and subdirectories stored in this directory before erasing the actual directory.

To rename a file:

- ➤ Call the file manager with PGM MGT.
- > Select the directory containing the file you wish to rename. Move the highlight to the desired file.
- > Shift the soft-key row.
- ➤ Press the RENAME soft key and enter the new file name.
- ➤ Press the ENT key or the EXECUTE soft key to rename the file. The original file name is erased.
- ➤ Close the file manager with END.

To protect a file:

- ➤ Call the file manager with PGM MGT.
- > Select the directory containing the file you wish to protect. Move the highlight to the desired file.
- ➤ Shift the soft-key row.
- ➤ Press the MORE FUNCTIONS soft key.
- > Press the PROTECT soft key. The file now has status P and cannot be accidentally changed or erased.
- ➤ Close the file manager with END.

To cancel file protection:

- ➤ Call the file manager with PGM MGT.
- > Select the directory containing the file whose protection you wish to remove. Move the highlight to the desired file.
- ➤ Shift the soft-key row.
- ➤ Press the MORE FUNCTIONS soft key.
- ➤ Press the UNPROTECT soft key.
- ➤ Type the code number 86357 and confirm with ENT. File protection is canceled, the file no longer has status P.
- ➤ Close the file manager with END.

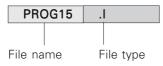
To convert a file:

Two soft keys are provided for converting files:

Functions for converting files	Soft key
FK program to HEIDENHAIN conversational format	CONVERT FK->H
HEIDENHAIN conversational format to OEM cycle	CONVERT H->CVC

To copy a file type into ASCII format (.A), use the COPY function (see page 1-36). Enter the file type .A for the destination file.

You can also convert an ASCII file into another format. To convert to ISO format, for example, enter the file type .I for the destination file.


Example: Converting an FK program into HEIDENHAIN conversational format

- ➤ Call the file manager with PGM MGT.
- ➤ Select the directory containing the file you wish to convert. Move the highlight to the desired file.
- > Shift the soft-key row.
- ➤ Press the MORE FUNCTIONS soft key.
- ➤ Press the CONVERT FK -> H soft key.
- ➤ Type the new file name into the highlight in the screen headline and confirm with ENT.
- ➤ Close the file manager with END.

1.6 File Management on the TNC 425, TNC 415 B and TNC 407

Programs, texts and tables are written as files and stored in the TNC.

File identification:

To open a new file you must enter a file name consisting of from one to 16 characters (letters and numbers), depending on MP7222.

The file types are listed in the table at right.

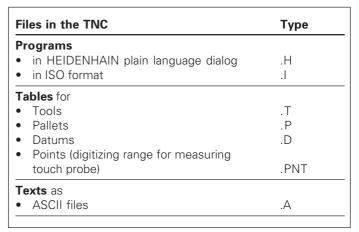


Fig. 1.39: TNC file types

File directory

The TNC can store up to 100 files at one time. You can call up a directory of these programs by pressing the PGM NAME key. To delete one or more programs, press the CL PGM key.

The file directory contains the following information:

- File name
- File type
- File size in bytes (=characters)
- File status

Further information is shown at the top of the screen:

- · Selected file storage
 - TNC memory
 - External storage over RS-232 interface
 - External storage over RS-422
- Interface mode (e.g., FE1, EXT1 for external storage)
- File type (e.g., * .H if only HEIDENHAIN dialog programs are shown)

Example:

RS 422/EXT1: * .T is displayed. This means that only those files are shown that have the extension .T and are located in an external storage device (e.g. a PC) that is connected to the TNC over the RS-422 interface (see also Chapter 10).

A soft key calls the file directory of an external data storage medium. The screen is then divided into two columns.

Select the file directory:

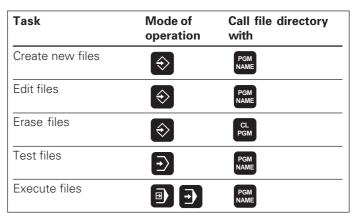


Fig. 1.40: File management functions

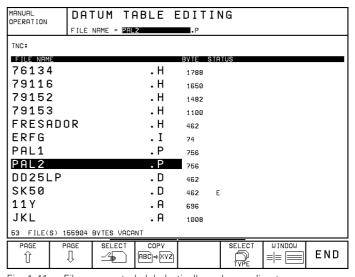


Fig. 1.41: Files are sorted alphabetically and according to type

Show the file directory in one or two columns. The selected layout is shown in the soft key.

1.6 File Management on the TNC 425, TNC 415 B and TNC 407

File status

The letters in the STATUS column give the following information about the files:

- E: File is selected in the PROGRAMMING AND EDITING operating mode
- S: File is selected in the TEST RUN operating mode
- M: File is selected in a program run operating mode
- P: File is protected against editing and erasure
- IN: File contains inch dimensions
- W: File has been transferred to external storage and cannot be run

Selecting a file

You must be in the PROGRAMMING AND EDITING mode of operation.

- ➤ Call the file manager with PGM NAME.
- ➤ Display the file type soft-key row with the SELECT TYPE soft key. Then press the soft key for the desired file type, for example SHOW .I for ISO programs.
- ➤ Use the arrow keys to move the highlight bar to the desired file.
- ➤ Confirm your selection with the SELECT soft key or with ENT.
- ➤ Close the file manager with END.

Functions for selecting files	Key/ Soft key
Move the highlight bar upward to the desired file	†
Move the highlight bar downward to the desired file	+
Move pagewise up through the file directory	PAGE Î
Move pagewise down through the file directory	PAGE
Select the highlighted file	SELECT

File Management on the TNC 425, TNC 415 B and TNC 407

To copy a file:

- ➤ Call the file manager with PGM NAME.
- ➤ Move the highlight to the file you wish to copy.
- ➤ Press the COPY soft key.
- > Type the new file name into the highlight in the screen headline.
- ➤ Press ENT to copy the file. The original file is retained.
- ➤ Close the file manager with END.

To erase a file:

- ➤ Press CL PGM.
- ➤ Move the highlight to the file you wish to delete.
- ➤ Press the DELETE soft key to erase the highlighted file.
- ➤ Close the file manager with END.

To rename a file:

- ➤ Call the file manager with PGM NAME.
- ➤ Move the highlight to the file you wish to rename.
- > Shift the soft-key row.
- ➤ Press the RENAME soft key and type the new file name into the highlight in the screen headline.
- ➤ Press ENT to rename the file. The original file name is erased.
- ➤ Close the file manager with END.

To protect a file:

- ➤ Call the file manager with PGM NAME.
- ➤ Move the highlight to the file you wish to protect.
- ➤ Shift the soft-key row.
- ➤ Press the PROTECT soft key. The file now has status P and cannot be accidentally changed or erased.
- ➤ Close the file manager with END.

To cancel file protection:

- ➤ Call the file manager with PGM MGT.
- ➤ Move the highlight to the file whose protection you wish to remove.
- > Shift the soft-key row.
- > Press the UNPROTECT soft key.
- ➤ Type the code number 86357 and confirm with ENT. File protection is canceled, the file no longer has status P.
- ➤ Close the file manager with END.

File Management on the TNC 425, TNC 415 B and TNC 407

To convert a file:

Text files (type .A) can be converted to any other type. Other types of files can only be converted into ASCII text files. They can then be edited with the alphanumeric keyboard.

Part programs that were created with FK free contour programming can also be converted to HEIDENHAIN conversational programs.

- ➤ Call the file manager with PGM NAME.
- ➤ Move the highlight to the file you wish to convert.
- > Shift the soft-key row.
- ➤ Press the CONVERT soft key
- ➤ Press the CONVERT FK -> H soft key.
- ➤ Type the new file name into the highlight in the screen headline and confirm with ENT.
- ➤ Close the file manager with END.

File management for files on external data media

You can erase and protect files stored on the FE 401B floppy disk unit from HEIDENHAIN. You can also format a floppy disk from the TNC. To do this you must first select the PROGRAMMING END EDITING mode of operation.

To erase a file on the FE 401B:

- > Press the EXT key. The TNC displays the files stored in the TNC memory in the left screen half, and the files stored on the FE 401 in the right screen half.
- ➤ Move the highlight to the right screen half.
- ➤ Press the WINDOW soft key to select one-window mode.
- ➤ Move the highlight to the file you wish to delete.
- > Press the DELETE soft key.
- ➤ Close the file manager with END.

To protect a file on the FE 401B:

- ➤ Press the EXT key. The TNC displays the files stored in the TNC memory in the left screen half, and the files stored on the FE 401 in the right screen half.
- ➤ Move the highlight to the right screen half.
- ➤ Press the WINDOW soft key to select one-window mode.
- ➤ Move the highlight to the file you wish to protect.
- ➤ Shift the soft-key row.
- ➤ Press the PROTECT soft key. The file now has status P and cannot be accidentally changed or erased.
- ➤ Close the file manager with END.

To cancel file protection on the FE 401B:

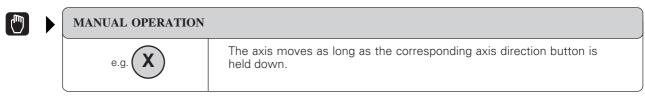
- ➤ Press the EXT key. The TNC displays the files stored in the TNC memory in the left screen half, and the files stored on the FE 401 in the right screen half.
- ➤ Move the highlight to the right screen half.
- ➤ Press the WINDOW soft key to select one-window mode.
- ➤ Move the highlight to the file whose protection you wish to remove.
- ➤ Shift the soft-key row.
- ➤ Press the UNPROTECT soft key.
- ➤ Type the code number 86357 and confirm with ENT. File protection is canceled, the file no longer has status P.
- ➤ Close the file manager with END.

1.6 File Management on the TNC 425, TNC 415 B and TNC 407

To format a floppy disk in the FE 401B:

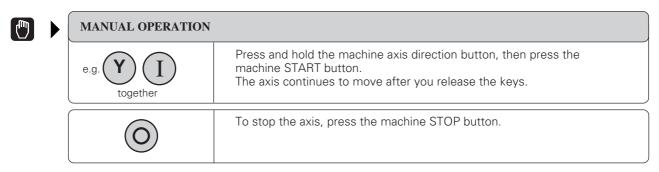
- ➤ Press the EXT key. The TNC displays the files stored in the TNC memory in the left screen half, and the files stored on the FE 401 in the right screen half.
- ➤ Move the highlight to the right screen half.
- ➤ Press the WINDOW soft key to select one-window mode.
- ➤ Shift the soft-key row.
- ➤ Press the FMT soft key.
- ➤ Enter a name for the diskette and start formatting with ENT.
- ➤ Close the file manager with END.

To convert and transfer files:


- ➤ Press the EXT key.
- ➤ Move the highlight in the left screen half to the file you wish to convert and transfer.
- ➤ Shift the soft-key row.
- ➤ Press the CONVERT soft key
- ➤ Press the CONVERT -> .A soft key, for example, to convert the file into an ASCII text file and store it on the FE 401.
- ➤ Type the new file name into the highlight in the screen headline and confirm with ENT.
- ➤ Close the file manager with END.

2.1 Moving the Machine Axes

Traversing with the machine axis direction buttons



Traversing with the machine axis direction buttons can vary depending on the individual machine tool. Your machine manual provides more information on this function.

You can move more than one axis at once in this way.

For continuous movement

You can move more than one axis at once in this way.

Traversing with an electronic handwheel

ELECTRONIC HANDWHEEL INTERPOLATION FACTOR: X =Enter the interpolation factor (see table). ENT Select the axis that you wish to move. For portable handwheels make the selection at the handwheel; for integral handwheels, at the TNC keyboard.

Now move the selected axis with the electronic handwheel. If you are using the portable handwheel, first press the enabling switch (on side of handwheel).

Interpolation factor	Traverse in mm per revolution
0	20.000
1	10.000
2	5.000
3	2.500
4	1.250
5	0.625
6	0.312
7	0.156
8	0.078
9	0.039
10	0.019

Fig. 2.1: Interpolation factors for handwheel speed

Fig. 2.2: HR 330 electronic handwheel

The smallest programmable interpolation factor depends on the specific machine tool. Your machine manual provides more detailed information on this subject.

Using the HR 330 electronic handwheel

The HR 330 portable handwheel has an enabling switch that is located on the side opposite to the star grip and the EMERGENCY STOP switch. You can only move the machine axes when the enabling switch is depressed.

- As long as the handwheel is attached to the machine tool, the enabling switch is automatically depressed.
- Attach the electronic handwheel to a steel surface with the mounting magnets such that it cannot be operated unintentionally.
- Be sure not to press the axis direction keys unintentionally while the enabling switch is depressed when you remove the handwheel from its position.

Incremental jog positioning

With incremental jog positioning, a machine axis moves by a preset distance each time you press the corresponding machine axis direction button.

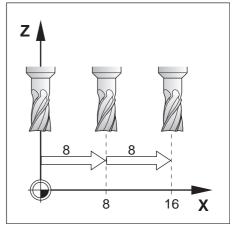
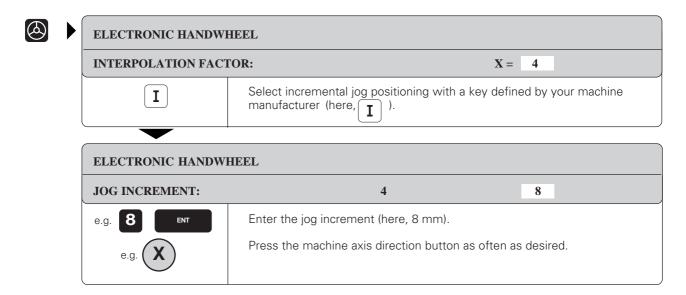



Fig. 2.3: Incremental jog positioning in the X axis

- Incremental jog positioning can vary depending on the individual machine tool. Your machine manual provides more information on this function.
- The machine tool builder determines whether the interpolation factor for each axis is set at the keyboard or with a step switch.

Positioning with manual data input (MDI)



Machine axis movement can also be programmed in the \$MDI file (see page 5-45).

Since the programmed movements are stored in memory, you can recall them and run them afterward as often as desired.

2.2 Spindle Speed S, Feed Rate F and Miscellaneous Functions M

These are the soft keys in the MANUAL OPERATION and ELECTRONIC HANDWHEEL modes:

With these functions and with the override knobs on the TNC keyboard you can change and enter:

- · spindle speed S
- feed rate F (only via override knob)
- miscellaneous functions M

These functions are entered directly in a part program in the PROGRAMMING AND EDITING mode.

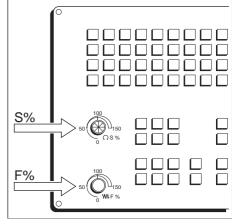
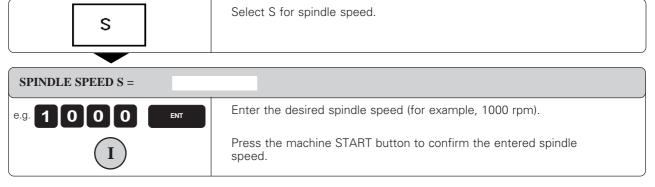
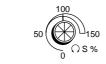



Fig. 2.4: Knobs for spindle speed and feed rate overrides

To enter the spindle speed S:

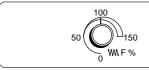


The machine tool builder determines which spindle speeds are allowed on your TNC. Your machine manual provides more information on the available spindle speeds.

The spindle speed S with the entered rpm is started with a miscellaneous function $\mathsf{M}.$

To change the spindle speed S:

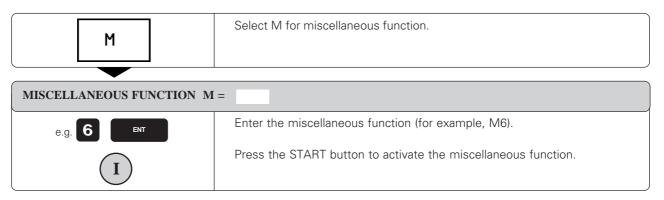
Turn the knob for spindle speed override:


You can vary the spindle speed from 0% to 150% of the last entered value.

The knob for spindle speed override is effective only on machines with a stepless spindle drive.

To change the feed rate F:

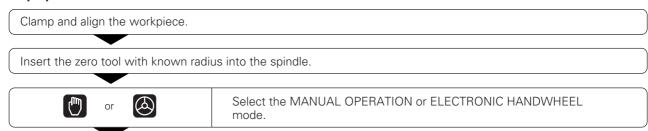
In the MANUAL OPERATION mode the feed rate is set by a machine parameter.


Turn the knob for feed rate override.

You can vary the feed rate from 0% to 150% of the set value.

To enter a miscellaneous function M:

The machine tool builder determines which miscellaneous functions are available on your TNC and what effects they have.



See Chapter 11 for a list of the miscellaneous functions.

2.3 Setting the Datum Without a 3D Touch Probe

You fix a datum by setting the TNC position display to the coordinates of a known point on the workpiece. The fastest, easiest and most accurate way of setting the datum is by using a 3D touch probe from HEIDENHAIN (see page 2-14).

To prepare the TNC:

Ensure that the TNC is showing the actual values (see page 10-8).

Setting the datum in the tool axis

Fragile workpiece?

If the workpiece surface must not be scratched, you can lay a metal shim of known thickness d on it. Then enter a tool axis datum value that is larger than desired datum by the value d.

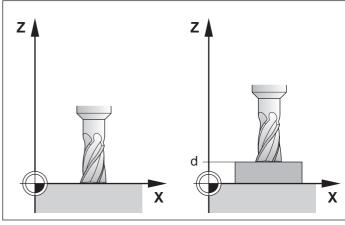
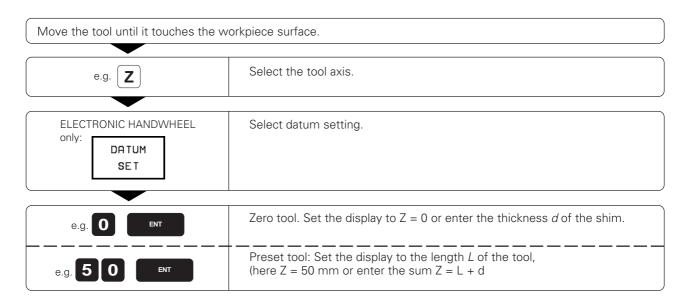



Fig. 2.5: Workpiece setting in the tool axis; right, with protective shim

To set the datum in the working plane:

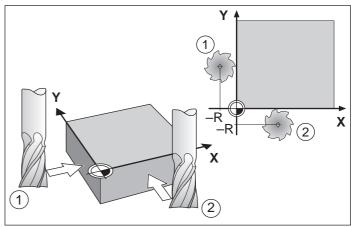
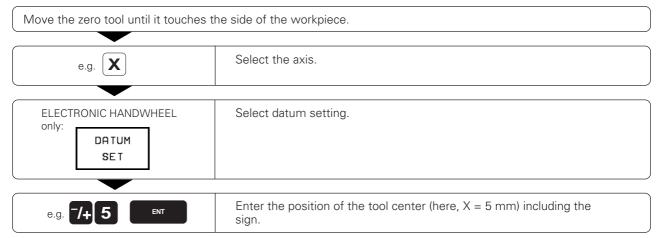



Fig. 2.6: Setting the datum in the working plane; plan view (upper right)

Repeat the process for all axes in the working plane.

The exact dialog for datum setting depends on machine parameters MP 7295 and MP 7296 (see page 11-11).

2.4 3D Touch Probes

3D Touch probe applications

Your TNC supports a HEIDENHAIN 3D touch probe. Typical applications for touch probes:

- Compensating misaligned workpieces (basic rotation)
- Datum setting
- Measuring:
 - lengths and workpiece positions
 - angles
 - radii
- circle centers
- Measurements during program run
- Digitizing 3D surfaces

Fig. 2.7: 3D touch probe model TS 120

- The TNC must be specially prepared by the machine manufacturerer for the use of a 3D touch probe.
- If you wish to make measurements during program run, ensure that the tool data (length, radius, axis) are taken either from the calibrated data or from the last TOOL CALL block (selection through MP 7411, see page 11-13).

After you press the machine START button, the touch probe begins executing the selected probing function. The machine tool builder sets the feed rate F at which the probe approaches the workpiece (MP6120). When the touch probe contacts the workpiece, it

- transmits a signal to the TNC (the coordinates of the probed position are stored),
- stops moving, and
- returns to its starting position at rapid traverse.

If the stylus is not deflected within the distance defined in MP 6130, the TNC displays an error message.

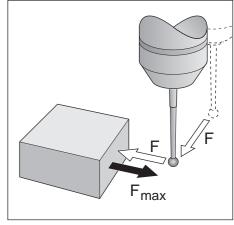
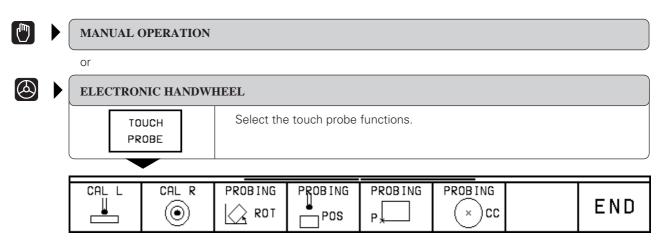



Fig. 2.8: Feed rates during probing

To select the touch probe functions:

Calibrating the 3D touch probe

The touch probe must be calibrated in the following cases:

- for commissioning
- after stylus breakage
- when the stylus is changed
- when the probing feed rate is changed
- in the case of irregularities, such as those resulting from warming of the machine.

During calibration, the TNC finds the "effective" length of the stylus and the "effective" radius of the ball tip. To calibrate the touch probe, clamp a ring gauge of known height and known inside radius to the machine table.

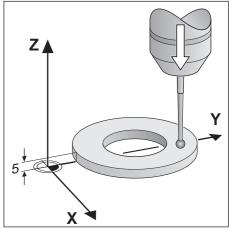
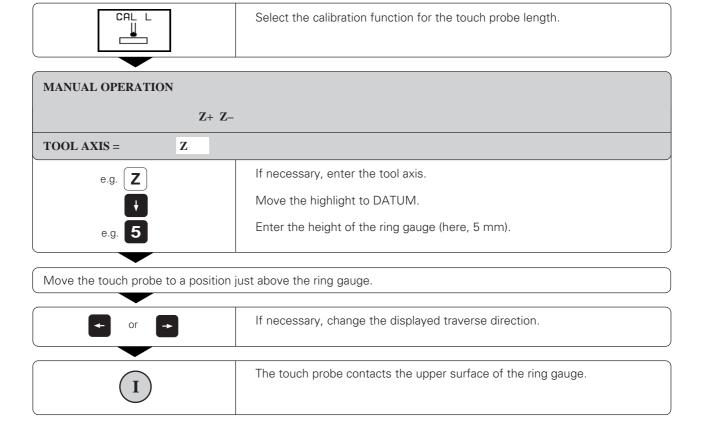



Fig. 2.9: Calibrating the touch probe length

To calibrate the effective length:

Set the datum in the tool axis such that for the machine tool table, Z=0.

2.4 3D Touch Probes

To calibrate the effective radius

Position the ball tip in the bore hole of the ring gauge.

Compensating center misalignment

After the touch probe is inserted it normally needs to be exactly aligned with the spindle axis. The misalignment is measured with this calibration function and automatically compensated electronically.

For this operation the 3D touch probe is rotated by 180°. The rotation is initiated by a miscellaneous function that is set by the machine tool builder in the machine parameter MP 6160.

The center misalignment is measured after the effective ball tip radius is calibrated.

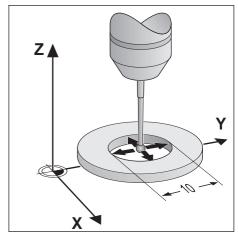
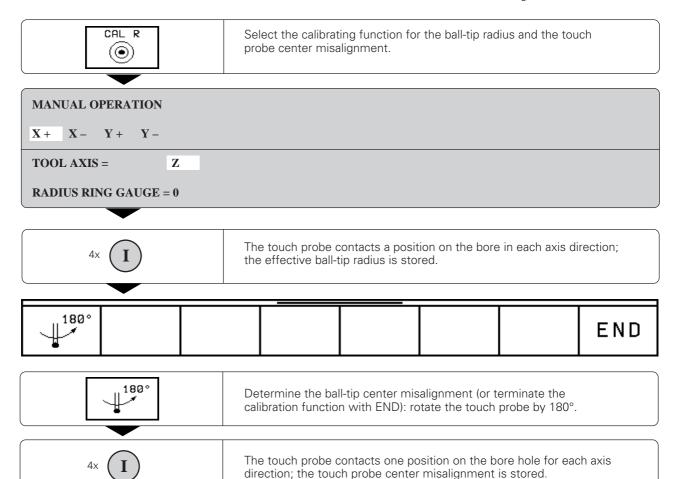



Fig. 2.10: Calibrating the touch probe radius and determining center misalignment

Displaying calibration values

The effective length and radius, and the center misalignment of the 3D touch probe are stored in the TNC for use when the touch probe is needed again. You can display the values on the screen with the soft keys CAL L and CAL R.

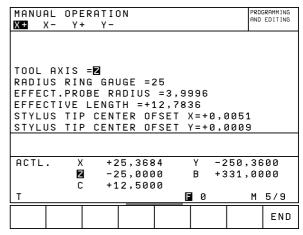


Fig. 2.11: Menu for touch probe radius and center misalignment

Compensating workpiece misalignment

The TNC electronically compensates workpiece misalignment by computing a "basic rotation". You set the rotation angle to the desired angle with respect to the reference axis in the working plane (see page 1-13).

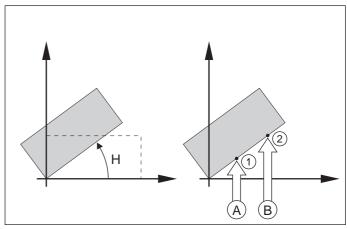
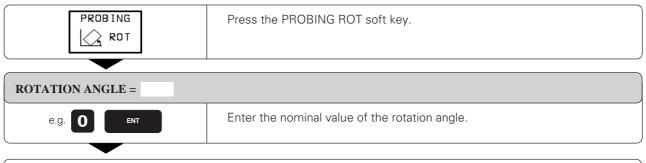
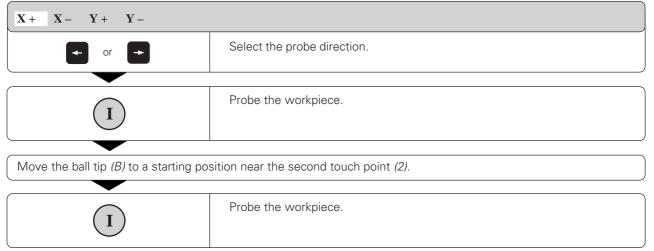



Fig. 2.12: Basic rotation of a workpiece; probing procedure for compensation (*right*). The broken line is the nominal position, the angle *H* is being compensated.



Move the ball tip (A) to a starting position near the first touch point (1).

:

2.4 3D Touch Probes

:

A basic rotation is kept in non-volatile storage and is effective for all subsequent program runs and graphic simulation.

Displaying basic rotation

The angle of the basic rotation appears after ROTATION ANGLE whenever PROBING ROT is selected. It is also shown in the additional status display (see page 1-27) under ROTATION.

In the status display, a symbol is shown for a basic rotation whenever the TNC is moving the axes according to a basic rotation.

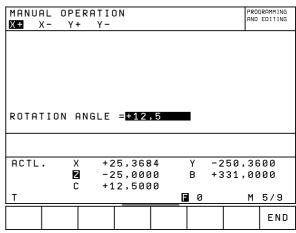
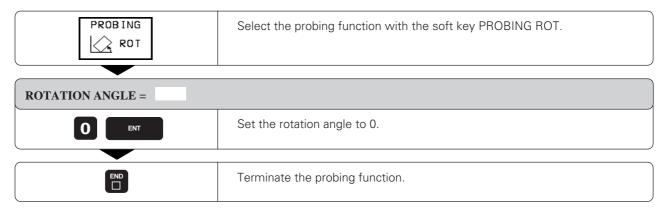



Fig. 2.13: Displaying the angle of an active basic rotation.

To cancel a basic rotation:

2.5 Setting the Datum with a 3D Touch Probe

The following functions are available for setting the datum on an aligned workpiece:

- Datum setting in any axis with PROBING POS
- Defining a corner as datum with PROBING P
- Setting the datum at a circle center with PROBING CC

To set the datum in an axis:

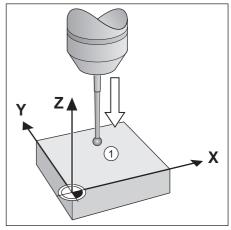
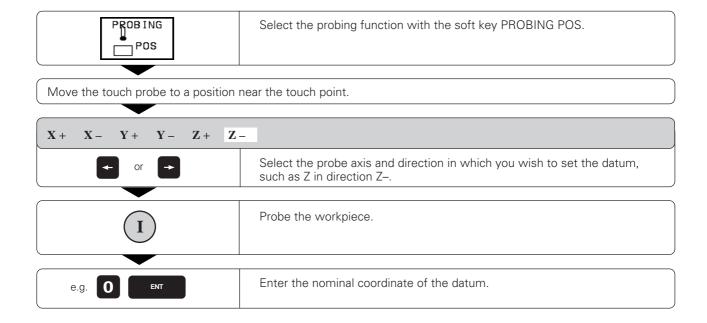



Fig. 2.14: Probing for the datum in the Z axis

2.5 Setting the Datum with a 3D Touch Probe

Corner as datum

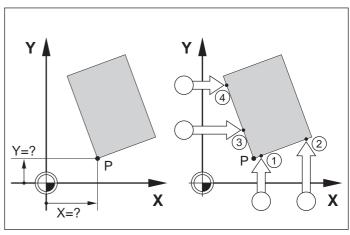
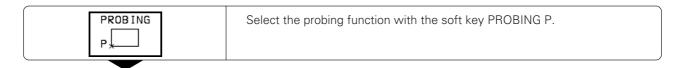
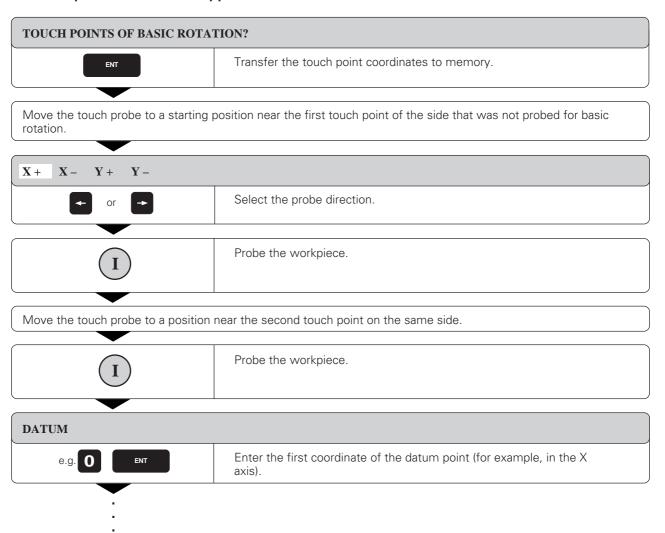
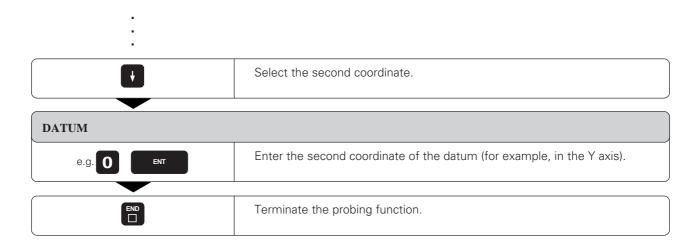
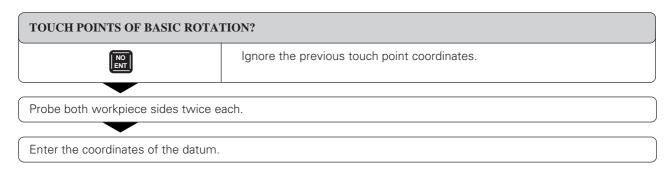
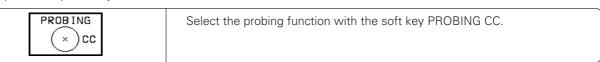





Fig. 2.15: Probing procedure for finding coordinates of corner P



To use the points that were already probed for a basic rotation:



If you do not wish to use the points that were already probed for a basic rotation:

Circle center as datum

With this function you can set the datum at the center of bore holes, circular pockets, cylinders, journals, circular islands, etc.

Inside circle

The TNC automatically probes the inside wall in all four coordinate axis directions.

For incomplete circles (circular arcs) you can choose the appropriate probing directions.

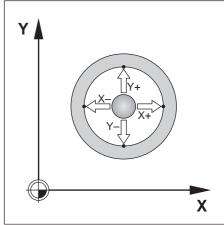
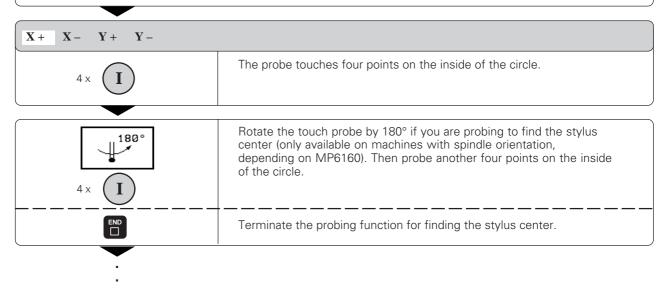
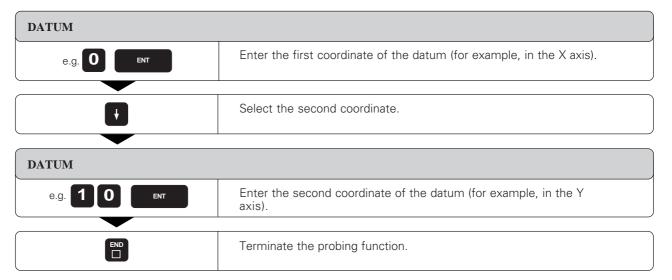




Fig. 2.16: Probing the inside of a cylindrical surface to find the center

Move the touch probe to a position approximately in the center of the circle.

2.5 Setting the Datum with a 3D Touch Probe

Outside circle

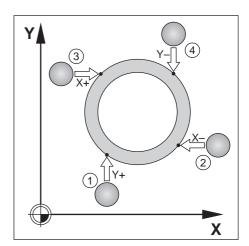
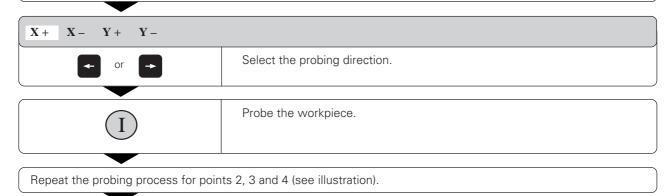



Fig. 2.17: Probing the outside of a cylindrical surface to find the center

Move the touch probe to the starting position near the first touch point (1) outside of the circle.

Enter the coordinates of the datum.

After the probing procedure is completed, the TNC displays the coordinates of the circle center and the circle radius PR.

Setting datum points over holes

A second soft-key row provides soft keys for using holes to set datums.

The touch probe is used in the same way as in the "circle center as datum" function (see page 2-17). First pre-position it in the approximate center of a hole, then press the machine START button to automatically probe four points in the hole.

Move the touch probe to the next hole and have the TNC repeat the probing procedure until all the holes have been probed to set datums.

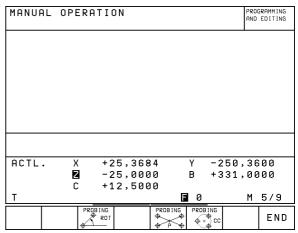
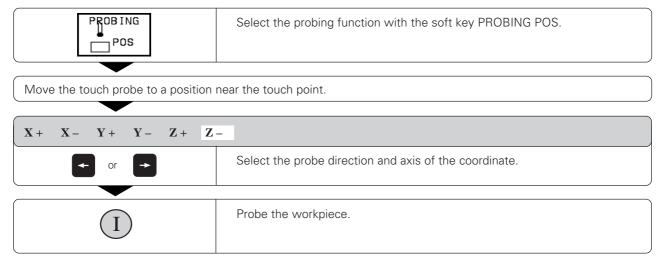


Fig. 2.18: Second soft-key row for TOUCH PROBE


Function Soft key PROBING ★ PO Basic rotation from 2 holes: ROT The TNC measures the angle between the line connecting the centers of two holes and a nominal angular position (angle reference axis). Datum from 4 holes: **PROBING** The TNC calculates the intersection of the line connecting the first two probed holes with the line connecting the last two probed holes. If a basic rotation was already made from the first two holes, these holes do not need to be probed again. Circle center from 3 holes: **PROBING** The TNC calculates a circle that intersects the centers of all three holes, and finds the center.

2.6 Measuring with a 3D Touch Probe

With a 3D touch probe you can determine

- position coordinates, and from them,
- dimensions and angles on the workpiece.

To find the coordinates of a position on an aligned workpiece:

The TNC shows the coordinates of the touch point as DATUM.

Finding the coordinates of a corner in the working plane

Find the coordinates of the corner point as described under "Corner as datum." The TNC displays the coordinates of the probed corner as DATUM.

Measuring workpiece dimensions

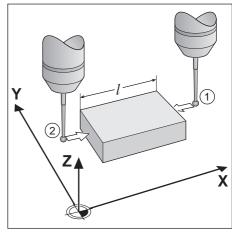
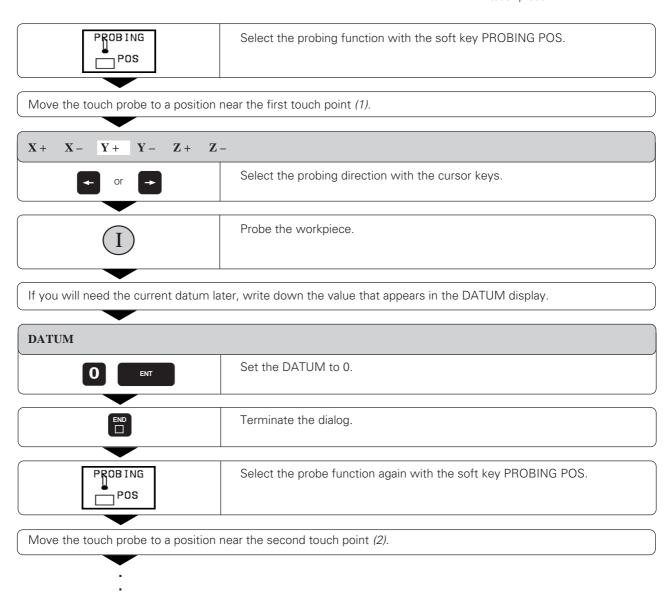
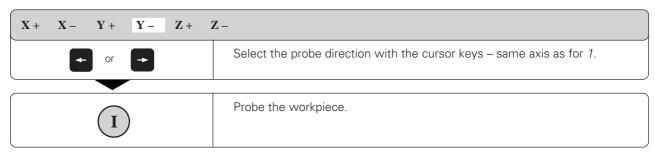
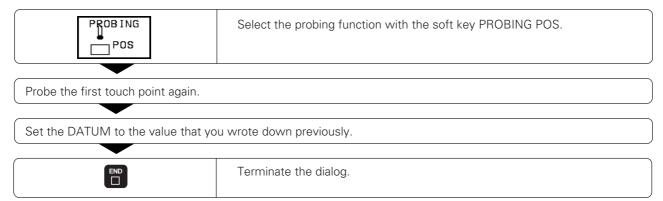




Fig. 2.19: Measuring lengths with the 3D touch probe

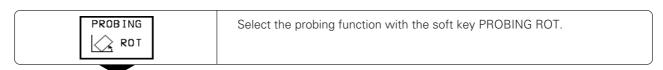

2.6 Measuring with a 3D Touch Probe

:

The value displayed as DATUM is the distance between the two points.

To return to the datum that was active before the length measurement:

Measuring angles


You can also use the touch probe to measure angles in the working plane.

You can measure

- the angle between the angle reference axis and a workpiece side, or
- the angle between two sides.

The measured angle is displayed as a value of maximum 90°.

To find the angle between the angle reference axis and a side of the workpiece:

ROTATION ANGLE

If you will need the current basic rotation later, write down the value that appears under ROTATION ANGLE.

Make a basic rotation with the side of the workpiece (see section "Compensating workpiece misalignment").

2.6 Measuring with a 3D Touch Probe

:

Display the angle between the angle reference axis and the side of the workpiece as the ROTATION ANGLE.

Cancel the basic rotation.

To restore the previous basic rotation:

Set the ROTATION ANGLE to the value you wrote down previously.

To measure the angle between two sides of a workpiece:

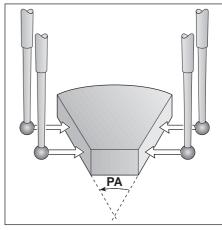


Fig. 2.20: Measuring the angle between two sides of a workpiece

Select the probing function with the PROBING ROT soft key.

ROTATION ANGLE

If you will need the current basic rotation later, write down the value that appears under ROTATION ANGLE.

Make a basic rotation for the first side (see "Compensating workpiece misalignment").

Probe the second side as for a basic rotation, but do not set the ROTATION ANGLE to zero!

The angle PA between the two sides appears under ROTATION ANGLE.

Cancel the basic rotation.

To restore the previous basic rotation:

Set the ROTATION ANGLE to the value you wrote down previously.

2.7 Tilting the Working Plane

The functions for tilting the working plane are interfaced to the TNC and the machine tool by the machine tool builder. On the TNC 426, the machine tool builder also determines whether the entered angles are interpreted as coordinates of the tilt axes or as solid angles. Your machine manual provides more detailed information on this subject.

The working plane is always tilted around the active datum.

The TNC supports machine tools with swivel heads (the tool is tilted) and/or tilting tables (the workpiece is tilted).

The program is written as usual in a main plane, such as the X/Y plane, but is executed in a plane that is tilted relative to the main plane.

Typical applications:

- Oblique holes
- · Contours in an oblique plane

There are two ways to tilt the working plane:

- 3D ROT soft key in the MANUAL OPERATION and ELECTRONIC HANDWHEEL operation modes
- Cycle G80 WORKING PLANE in the part program (see page 8-55)

The tilting functions are coordinate transformations. The transformed tool axis (i.e., as calculated by the TNC) always remains parallel to the actual tool axis (the axis being positioned). The working plane is always perpendicular to the direction of the tool axis.

When tilting the working plane, the TNC differentiates between two machine types:

- Machines with tilting tables
- Machines with swivel heads

Machines with tilting tables:

- You must bring the workpiece into the desired position for machining by positioning the tilting table, for example with a G00 block.
- The position of the transformed tool axis does not change in relation to the machine-based coordinate system. Thus if you rotate the table and therefore the workpiece—by 90° for example, the coordinate system does not rotate. If you press the Z+ axis direction button in the MANUAL OPERATION mode, the tool moves in Z+ direction.
- In calculating the transformed coordinate system the TNC considers only the mechanically influenced offsets of the particular tilting table (the so-called "translational" components).

2.7 Tilting the Working Plane

Machines with swivel heads:

- You must bring the tool into the desired position for machining by positioning the swivel head, for example with a G00 block.
- The position of the transformed tool axis (like the position of the tool) **changes** in relation to the machine-based coordinate system. Thus if you rotate the swivel head—and therefore the tool—in the B axis by +90° for example, the coordinate system **rotates also**. If you press the Z+ axis direction button in the MANUAL OPERATION mode, the tool moves in X+ direction of the machine-based coordinate system.
- In calculating the transformed coordinate system the TNC considers the
 mechanically influenced offsets of the particular swivel head (the socalled "translational" components) and the offsets caused by tilting of
 the tool (3D tool length compensation).

Traversing reference points with tilted axes

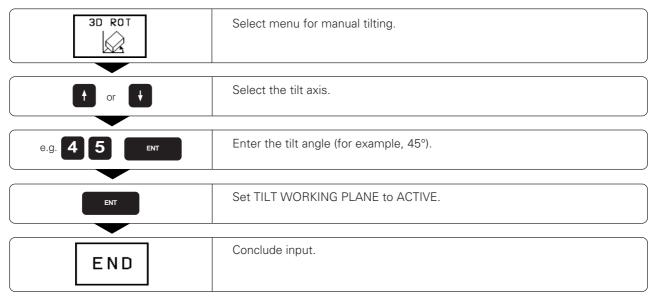
When axes are tilted, the reference points are traversed by pressing the machine axis direction buttons. The TNC interpolates the tilted axes. Make sure that the tilting function is active in the manual operating mode and that the actual angle value of the tilted axis was correctly entered in the menu (see page 2-26).

Setting the datum in a tilted coordinate system

After you have positioned the tilted axes, set the datum in the same way as for non-tilted axes: either manually by touching the workpiece with the tool (see page 2-7), or (much more easily) by allowing the part program to automatically set the datum with the aid of the HEIDENHAIN 3D touch probe (see page 2-14).

The TNC then converts the datum for the tilted coordinate system. The angular values for this calculation are taken from the menu for manual tilting, regardless of whether the tilting function is active or not.

The angular values entered in the menu for manual tilting (see page 2-26) must correspond to the actual position(s) of the tilted axis or axes. The TNC will otherwise calculate a wrong datum.


Position display in the tilted system

The positions displayed in the status window (NOML and ACTL) are in the tilted coordinate system.

Limitations on working with the tilting function

- The touch probe function BASIC ROTATION cannot be used.
- PLC positioning (determined by the machine tool builder) is not possible.

To activate manual tilting:

A symbol for the tilted plane is shown in the status display whenever the TNC is moving the machines axes in the tilted plane.

If you have set the function TILT WORKING PLANE to ACTIVE in the PROGRAM RUN mode of operation, the tilt angle entered in the menu becomes effective in the first block of the part program to be executed. If you have entered cycle G80 WORKING PLANE in the part program, the angular values defined in the cycle become effective immediately after cycle definition. Angular values entered in the menu will be overwritten.

To reset:

Set TILT WORKING PLANE to INACTIVE.

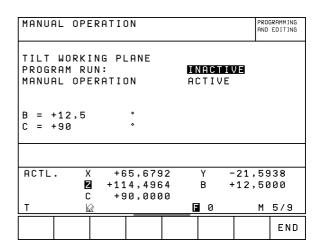
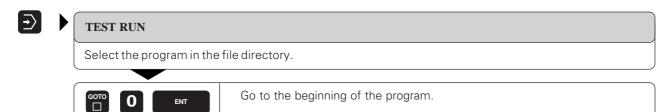


Fig. 2.21: Menu for manual tilting in the MANUAL OPERATION mode

3.1 Test Run

In the TEST RUN mode of operation the TNC checks programs and program sections for the following errors (without moving the machine axes):

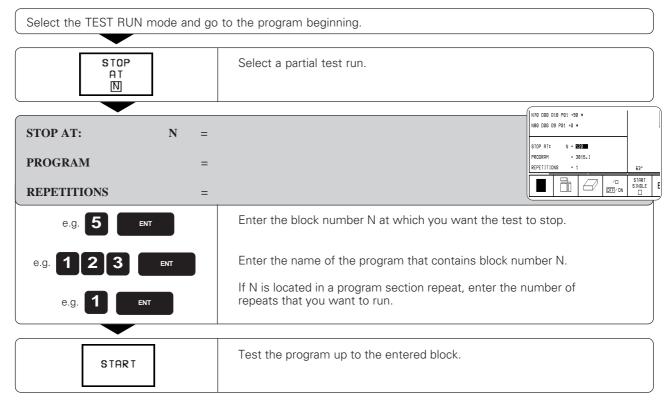
- Geometrical incompatibilities
- Missing information
- Impossible jumps
- Violation of the machine's working space


The following functions can be used in the TEST RUN operating mode:

- Blockwise test run
- Interrupt test at any block
- · Block skip
- Blockwise transfer of very long programs from external storage media
- Graphic simulation
- Measurement of machining time
- Additional status display

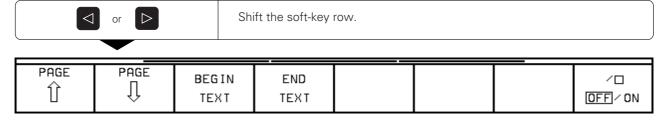
To run a program test:

- If the central tool file is active, the tool table with which the program test is to be run must have status S (see page 1-31).
- With the MOD function DATUM SET, you can activate work space monitoring for the test run (see page 10-6).



Function	Soft key	
Test the entire program	START	
Test each program block individually	START SINGLE	
Show the blank form and test the entire program	RESET + START	
Interrupt the test run	STOP	

3.1 Test Run


To run a program test up to a certain block:

With the STOP AT N function the TNC does a test run up to the block with block number N.

The display functions for test run

In the TEST RUN operating mode the TNC offers functions for displaying a program in pages.

Function	Soft key
Go back in the program by one screen	PAGE ↓
Go forward in the program by one screen	PAGE Î
Go to the beginning of the program	BEG IN TEXT
Go to the end of the program	END TEXT

In the PROGRAM RUN / FULL SEQUENCE mode of operation the TNC executes a part program continuously to its end or up to a program stop.

In the PROGRAM RUN / SINGLE BLOCK mode of operation you must start each block separately by pressing the machine START BUTTON.

The following functions can be used during a program run:

- Interrupt program run
- Start program run from a certain block
- Blockwise transfer of very long programs from external storage
- Block skip
- Editing and using the tool table TOOL.T
- Checking/changing Q parameters
- Graphic simulation
- Additional status display

To run a part program:

- Clamp the workpiece to the machine table.
- Set the datum.
- Select the necessary tables and pallet files.

You can adjust the feed rate and spindle speed with the override knobs.

for each block

Interrupting machining

There are several ways to interrupt a program run:

- Programmed interruptions
- Machine STOP key
- Switching to PROGRAM RUN / SINGLE BLOCK

If the TNC registers an error during program run, it automatically interrupts the machining process.


Programmed interruptions

Interruptions can be programmed directly in the part program. Program run is interrupted at a block containing one of the following entries:

- G38
- Miscellaneous function M0, M02 or M30
- Miscellaneous function M06 (determined by the machine tool builder)


To interrupt or abort machining immediately:

The block which the TNC is currently executing is not completed.

The * symbol in the status display blinks.

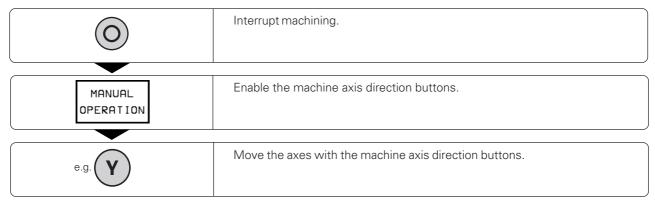
Program run can be aborted with the INTERNAL STOP function.

The * symbol in the status display goes out.

To interrupt machining at the end of the current block:

You can interrupt the program run at the end of the current block by switching to the PROGRAM RUN / SINGLE BLOCK mode.

Moving machine axes during an interruption


You can move the machine axes during a program interruption in the same way as in the MANUAL OPERATION mode. Simply enable the machine axis direction buttons by pressing the MANUAL OPERATION soft key.

Danger of collision

If you interrupt program run while the working plane is tilted, you can change from a tilted to an untilted coordinate system, and vice-versa, by pressing the 3D ON/OFF soft key. The functions of the axis direction buttons, the electronic handwheel and the positioning logic for return to contour are then evaluated by the TNC. When retracting the tool make sure the correct coordinate system is active and the angular values of the tilt axes are entered in the 3D ROT menu (see page 2-26).

Example: retracting the spindle after tool breakage

On some machines you may have to press the machine START button after the MANUAL OPERATION soft key to enable the axis direction buttons. Refer to the operating manual of your machine tool for further information.

Resuming program run after an interruption

- If a program run is interrupted during a fixed cycle, the program must be resumed from the beginning of the cycle. This means that some machining operations will be repeated.
- If a program run is interrupted during execution of a subprogram or a program section repeat, use the RESTORE POS AT N function to return to the position at which the program run was interrupted.

When a program run is interrupted, the TNC stores:

- The data of the last tool called
- Active coordinate transformations
- The coordinates of the circle center that was last defined

The stored data are used for returning the tool to the contour after manual machine axis positioning during an interruption (RESTORE POSITION).

Resuming program run with the START button

You can resume program run by pressing the START button if the program was interrupted in one of the following ways:

- The machine STOP button was pressed
- A programmed interruption

Resuming program run after an error

• If the error message is not blinking:

Remove the cause of the error.

Clear the error message from the screen.

Restart the program, or resume program run at the place at which it was interrupted.

• If the error message is blinking:

Switch off the TNC and the machine.

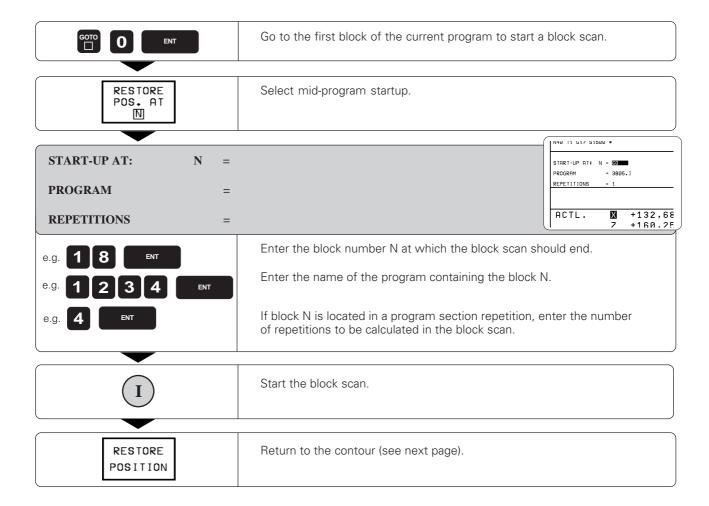
Remove the cause of the error.

Start again.

• If you cannot correct the error:

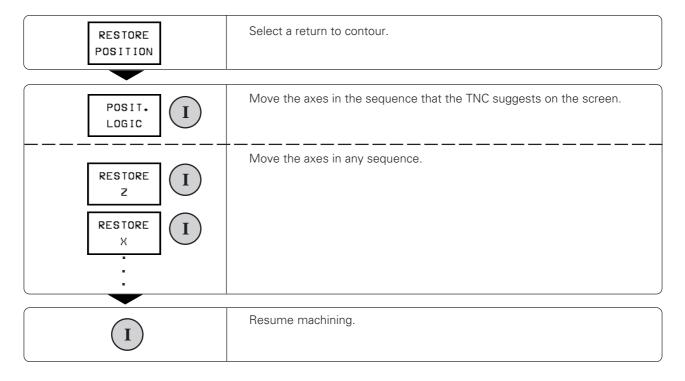
Write down the error message and contact your repair service agency.

Mid-program startup

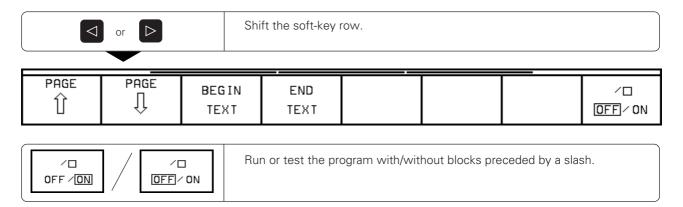

The RESTORE POS AT N feature must be enabled and adapted by the machine tool builder. Refer to the operating manual of your machine tool for further information.

With the RESTORE POS AT N feature (block scan) you can start a part program at any block you desire. The TNC scans the program blocks up to that point. Machining can be graphically simulated.

If a part program has been interrupted with an INTERNAL STOP, the TNC automatically offers the interrupted block N for mid-program startup.


- Mid-program startup must not begin in a subprogram.
- All necessary programs, tables and pallet files must be selected in a program run mode of operation.
- If the part program contains a programmed interruption before the startup block, the block scan is interrupted. Press the machine START button to continue the block scan.
- After a block scan, return the tool to the calculated position with RESTORE POSITION.
- If you are working with nested programs, you can use MP7680 to define whether the block scan is to begin at block 0 of the main program, or at block 0 of the last interrupted program.
- If the working plane is tilted, you can use the 3D ON/OFF soft key to define whether the TNC is to return to the contour in a tilted or in an untilted coordinate system.

Returning to the contour


With the RESTORE POSITION function, the TNC returns the tool to the workpiece contour in the following situations:

- Return to contour after the machine axes were moved during a program interruption
- Return to the position that was calculated for mid-program startup

3.3 Optional Block Skip

In a test run or program run, the TNC can skip over blocks that you have programmed with a slash (/).

This function does not work with G99 blocks.

3.4 Blockwise Transfer: Testing and Running Long Programs

Programs that occupy more memory than the TNC provides can be "drip fed" block by block from an external storage device.

During program run, the TNC transfers program blocks from a floppy disk unit or PC through its data interface, and erases them after execution. This frees up memory for new blocks. (Coordinate transformations remain active even when the cycle definition has been deleted.)

To prepare for blockwise transfer:

- · Prepare the data interface.
- Configure the data interface with the MOD function RS-232/422-SETUP (see page 10-4).
- If you wish to transfer a part program from a PC, interface the TNC and PC (see pages 9-5 and 11-3).
- Ensure that the transferred program meets the following requirements:
 - The highest block number must not exceed 99999999. The block numbers, however, can be repeated as often as necessary.
 - The program must not contain subprograms.
 - The program must not contain program section repeats.
 - All programs that are called from the transferred program must be selected (status M).

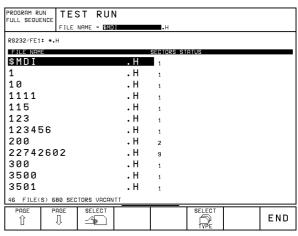
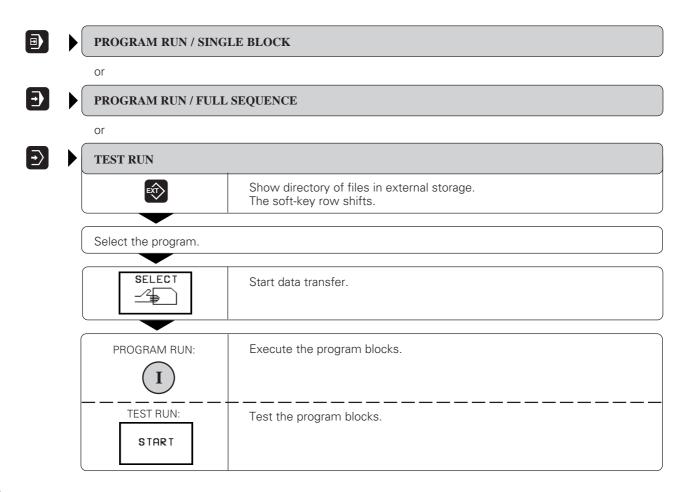



Fig. 3.1: TNC screen during blockwise transfer

If data transfer is interrupted, press the START key again.

Blockwise Transfer: Testing and Running Long Programs

Jumping over blocks

The TNC can jump over blocks to begin transfer at any desired block. These blocks are then ignored during a program run or test run.

Select the program and start data transfer. Go to the block number at which you wish to begin data transfer, for e.g. example 150. PROGRAM RUN: Execute the transferred blocks, starting with the block number that you entered. TEST RUN: Test the transferred blocks, starting with the block number that you entered. START

You can use machine parameter MP7228 (see page 11-12) to define the memory range to be used during blockwise transfer. This prevents the transferred program from filling the program memory and disabling the background programming feature.

As an alternative, you can call the external program with % EXT (see page 6-8) and perform a mid-program startup.

Example: To perform a mid-program start-up from block 12834 of external program GEH35K1 proceed as follows:

- Write the following short program: %START-UP G71 N10 % EXT:GEH35K1 N99999 %START-UP G71
- Select the START-UP program in the PROGRAM RUN/ FULL SEQUENCE mode of operation.
- Select the RESTORE POS AT N function and enter the desired block number, here 12834, for START-UP AT and the desired program, here GEH35K1, for PROGRAM.
- Start block scan with the NC START key.

4 Programming

In the PROGRAMMING AND EDITING mode of operation (see pages 1-30 and 1-40) you can

- · create new files
- · edit existing files

This chapter describes the basic functions and inputs that do not yet cause machine axis movement. The entry of geometry for workpiece machining is described in the next chapter.

4.1 Creating Part Programs

Layout of a program

A part program consists of individual program blocks. The TNC numbers the blocks in ascending sequence. The block number increment is defined in MP 7220 (see page 11-7). Program blocks consist of units of information called *words*.

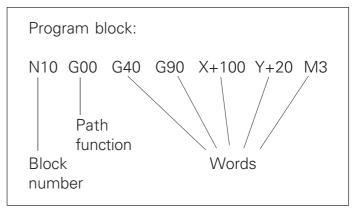


Fig. 4.1: Program blocks consist of words of specific information

Function	Key
Continue dialog	ENT
Ignore dialog question	NO ENT
End block	END
Delete block / delete word	DEL .

4.1 Creating Part Programs

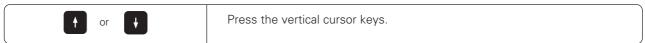
Editing functions

Editing means entering, adding to or changing commands in programs.

The TNC enables you to

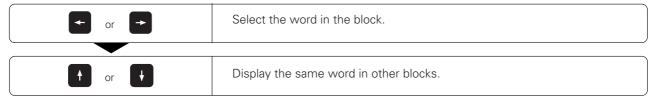
- Enter data with the keyboard
- Select desired blocks and words
- Insert and erase blocks and words
- Correct wrong values and commands
- Easily clear TNC messages from the screen

Types of inputs

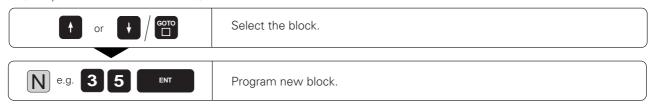

Numbers, coordinate axes and radius compensation are entered directly by keyboard. You can set the algebraic sign either before, during or after a numerical entry.

Selecting blocks and words

• To call a block with a certain block number:


• To move one block forwards or backwards:

• To select individual words in a block:



• To find the same word in other blocks:

Inserting blocks

 New program blocks can be inserted behind any existing block (except behind the N99999 block):

Creating Part Programs

Editing and inserting words

Highlighted words can be changed as desired—simply overwrite the old value with the new one. After entering the new value, press a horizontal cursor key or the END key to confirm the change.

In addition to changing the existing words in a block, you can also add new words. Use the horizontal cursor keys to move the highlight to the block you wish to add words to.

Erasing blocks and words

Function	Key
Set the highlighted number to 0	CE
Erase an incorrect number	CE
Clear a non-blinking error message	CE
Delete the selected word	DEL
Delete the selected block	DEL
Erase program sections: First select the last block of the program section to be erased.	DEL

4.2 Tools

Each tool is identified by a number.

The tool data, consisting of the

- length L
- radius R

are assigned to the tool number.

The tool data can be entered

- into the individual part program in a G99 block, or
- once for each tool into a common tool table that is stored as a type .T file.

Once a tool is defined, the TNC associates its dimensions with the tool number and accounts for them when executing positioning blocks.

The way the tool is used is influenced by several miscellaneous functions (see page 11-16).

Setting the tool data

Tool numbers

Each tool is identified by a number between 0 and 254.

When the tool data are entered into the program, tool number 0 is automatically defined as having length L=0 and radius R=0. In tool tables, also, tool 0 should be defined with L=0 and R=0.

Tool radius R

The radius of the tool is entered directly.

Tool length L

The compensation value for the tool length is measured

- as the difference in length between the tool and a zero tool, or
- with a tool pre-setter.

A tool pre-setter eliminates the need to define a tool in terms of the difference between its length and that of another tool.

Oversizes for lengths and radii: delta values

In tool tables you can enter so-called delta values for tool length and radius.

- Positive delta values = tool oversize
- Negative delta values = tool undersize

Application

• Undersize in the tool table for wear

Delta values can be numerical values or 0. The maximum permissible oversize or undersize is +/- 99.999 mm.

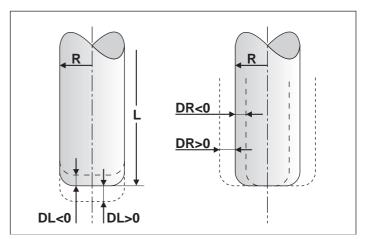


Fig. 4.2: Oversizes DL, DR on a toroid cutter

Determining tool length with a zero tool

For the sign of the tool length L:

 $L > L_0$ The tool is longer than the zero tool $L < L_0$ The tool is shorter than the zero tool

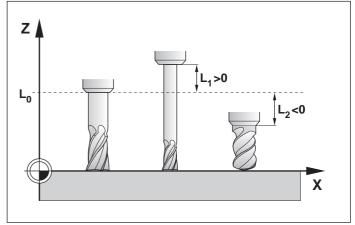


Fig. 4.3: Tool lengths are entered as the difference from the zero tool

Move the zero tool to the reference position in the tool axis (e.g. workpiece surface with Z = 0).

If necessary, set the datum in the tool axis to 0.

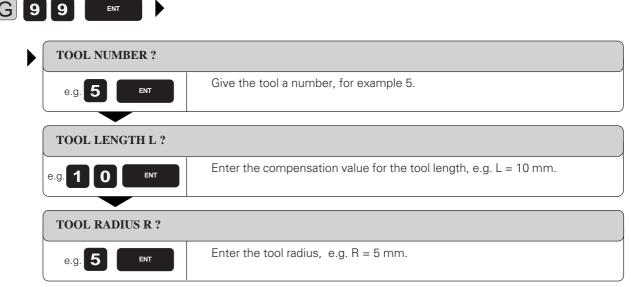
Change tools.

Move the new tool to the same reference position as the zero tool.

The TNC displays the compensation value for the length ${\sf L}.$

Note down the value and enter it later.

Enter the display value by using the "actual position capture" function (see page 4-26).


4.2 Tools

Entering tool data into the program

The following data can be entered once for each tool in the part program:

- Tool number
- Tool length compensation value L
- Tool radius R

To enter tool data into the program block:

Resulting NC block: G99 T5 L+10 R+5

You can enter the tool length L directly in the tool definition by using the "actual position capture" function (see page 4-26).

Entering tool data in tables

A tool table is a file containing the data for all tools. The maximum number of tools per table (0 to 254) is set in machine parameter MP7260.

On machines with automatic tool changers, the tool data must be stored in tool tables. You can edit these tool tables using special time-saving editing functions.

Types of tool tables

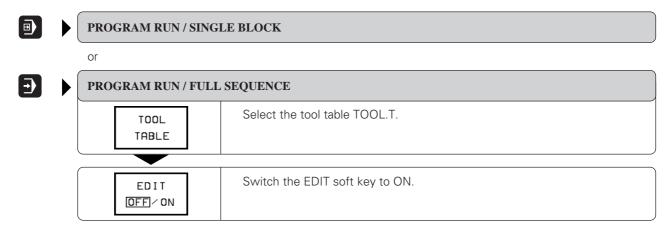
Tool table TOOL.T is

- used for machining
- edited in a program run mode of operation

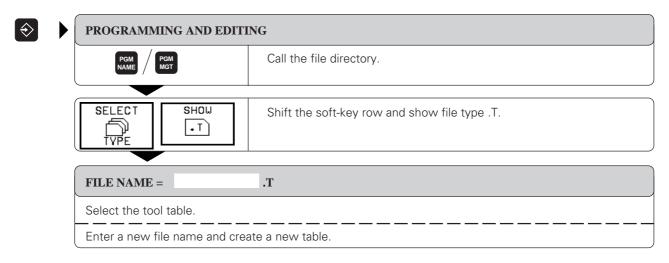
All other tool tables are

- · used for test runs and archiving
- edited in the PROGRAMMING AND EDITING mode of operation

If you copy a tool table into TOOL.T for a program run, the old TOOL.T will be overwritten.


Editing functions for tool tables

The following functions help you to create and edit tool tables:


	Key / Soft key
Move the highlight vertically	† †
Move the highlight horizontally	
Go to the beginning of the table	BEGIN TABLE
Go to the end of the table	END TABLE
Go to the next table page	PAGE
Go to the previous table page	PAGE
Go to the beginning of the next line	NEXT LINE
Look for the tool name in the tool table	F I ND TOOL NAME
Display / Do not display the tool pocket number in the first column (TNC 426 only)	SHOW OMIT TCHNR

4.2 Tools

To edit the tool table TOOL.T:

To edit a tool table other than TOOL.T:

Tools

4.2

Tool data in tables

The following information can be entered in tool tables:

- · Tool radius and tool length: R, L
- Curvature radius of the tool point for threedimensional tool compensation: R2
 For graphic display of machining with a spherical cutter, enter R2 = R.
- Oversizes (delta values) for tool radii and tool lengths: DR, DR2, DL
- Tooth length of the tool: LCUTS (TNC 426 only)
- Maximum plunge angle of the tool: ANGLE (TNC 426 only)
- Tool name: NAME
- Maximum and current tool life: TIME1, TIME2, CUR.TIME
- Number of a replacement tool: RT
- Tool lock: TL
- Tool comment: DOC
- Information on this tool for the PLC (programmable logical control: for interfacing the control to the machine): PLC

The following tool data only apply for automatic tool measurement (conversational programming only):

- Number of cutting edges for tool measurement: CUT
- Length tolerance for tool wear: LTOL
- Radius tolerance for tool wear: RTOL
- Cutting direction for dynamic tool measurement: DIRECT.
- Tool offset between stylus center and tool center: TT:R-OFFS
 - Preset value: tool radius R
- Tool offset between upper edge of stylus and lower edge of tool: TT:L-OFFS Preset value: 0
- Length tolerance for tool break: LBREAK
- Radius tolerance for tool break: RBREAK

	RAM RU SEQUE			L TABL	Е		
F	ILE: T	OOLS		MM			>
T	NAME		L	R	R2	DL	DR
а			+0	+0	+0	+0	+0
1	CUTT	ER1	+12.658	+3.75	+0.125	-0.68	-0.35
2	DRIL	LER	-2.59	+8.5	+0	+0	-0.07
3			+0	+0	+0	+0	+0
4			+0	+0	+0	+0	+0
5	CUTT	ER1A	+7.8	+3.5	+0.155	-0.06	-0.15
3			+0	+0	+0	+0	+0
7	BILL	S	+1.25	+5	+0.5	+0.1	+0
В			+0	+0	+0	+0	+0
9			+12.59	+1	+0.05	+0.01	+0
10			+0	+0	+0	+0	+0
11			+0	+0	+0	+0	+0
12	CUTT	ER12	+12.658	+3.75	+0.125	-0.68	-0.35
	GIN ABLE	END TABLE	PAGE ↓	PAGE Î		NEX LIN	- 1

Fig. 4.4: Left part of the tool table

	RAM RUN SEQUENC	_ EDI	т тоо	L TE	BLE				
FULL	SEGUENU	* T00I	L DES	CRIF	TIO	N			
< <fi< th=""><th>LE: TOO</th><th>LS</th><th></th><th>MM</th><th></th><th></th><th></th><th></th><th></th></fi<>	LE: TOO	LS		MM					
ī	DL	DR	DR2	TL RT	T I ME 1	TIME	CUR.TIM	E DOC	
0	+0	+0	+0		Ø	0	0		
1	-0.68	-0.35	+0.02	5	5800	5000	1256	FIRST TOO	-
2	+0	-0.07	+0		4000	4600	1208		
3	+0	+0	+0		Ø	0	0	OLD TOOL	
4	+0	+0	+0		Ø	0	0		
5	-0.06	-0.15	+0.015	1	6000	5800	2578	ROUGH	
6	+0	+0	+0		Ø	0	0		
7	+0.1	+0	+0.01	L	1000	910	542		
8	+0	+0	+0		Ø	0	0		
9	+0.01	+0	+0.0015	L	800	650	125	POLISHING	
10	+0	+0	+0		Ø	0	0		
11	+0	+0	+0		Ø	0	0		
12	-0.68	-0.35	+0.02	5	3000	2500	715	FINE WORKS	3
	3 IN BLE	END TABLE	PAGE	PAGE				NEXT LINE	

Fig. 4.5: Right part of the tool table

A general user parameter (MP7266) defines which data can be entered in the tool table and in what sequence the data is displayed.

The sequence of information in the tool table shown in the illustrations to the right is only one example out of many possibilities.

If all the information in a table no longer fits on one screen, this is indicated with >> or << in the line with the table name.

The following note applies to the TNC 426:

If you are copying a tool table from an external storage device into the TNC, you can overwrite individual lines or columns in the target table with the REPLACE FIELDS soft key. Prerequisites:

- The target table must exist.
- The file to be copied must only contain the lines or columns you want to replace.

4.2 Tools

To read out or read in a tool table (see page 9-4):

EXT	Select external data input/output directly from the table.
TRANSFER TNC) ⇒ EXT	Read out the table.
TRANSFER TNC + EXT	Read in the table (only possible if EDIT ON is selected).

4.2 Tools

Abbreviation	Input	Dialog
Т	Number by which the tool is called in the program	-
NAME	Name by which the tool is called in the program	TOOL NAME ?
L	Value for tool length compensation	TOOL LENGTH L ?
R	Tool radius R	TOOL RADIUS ?
R2	Tool radius R2 for toroid cutters (only for 3D radius compensation or graphical representation of a machining operation with spherical or toroid cutters)	TOOL RADIUS 2 ?
DL	Delta value for tool length	TOOL LENGTH OVERSIZE ?
DR	Delta value for tool radius R	TOOL RADIUS OVERSIZE ?
DR2	Delta value for tool radius R2	TOOL RADIUS OVERSIZE 2 ?
LCUTS	Tooth length of the tool: required for Cycle 22 (TNC 426 only)	TOOTH LENGTH IN TOOL AXIS ?
ANGLE	Maximum plunge angle of the tool for reciprocating plunge-cut (TNC 426 only)	MAXIMUM PLUNGE ANGLE ?
TL	Tool Lock	TOOL INHIBITED YES=ENT/NO=NOENT
RT	Number of a replacement tool, if available (see also TIME2	ALTERNATE TOOL ?
TIME1	Maximum tool life in minutes: The meaning of this information can vary depending on the individual machine tool. Your machine manual provides more information on TIME 1.	MAXIMUM TOOL LIFE ?
TIME2	Maximum tool life in minutes during TOOL CALL: If the current tool life exceeds this value, the TNC changes the tool during the next TOOL CALL (see also CUR.TIME).	MAXIMUM TOOL LIFE FOR TOOL CALL ?
CUR.TIME	Time in minutes that the tool has been in use: The TNC automatically counts the current tool life. A starting value can be entered for used tools.	CURRENT TOOL LIFE ?
DOC	Comment on tool (up to 16 characters)	TOOL DESCRIPTION ?
PLC	Information on this tool that is to be sent to the PLC	PLC STATUS?

Overview: Information in tool tables

4.2 Tools

Abbreviation	Input	Dialog
CUT.	Automatic tool measurement: number of cutting edges (20 cutting edges maximum)	NUMBER OF CUTTERS ?
LTOL	Automatic tool measurement: permissible deviation from tool length L for wear detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	WEAR TOLERANCE: LENGTH ?
RTOL	Automatic tool measurement: permissible deviation from tool radius R for wear detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	WEAR TOLERANCE: RADIUS ?
DIRECT.	Automatic tool measurement: cutting direction of the tool for dynamic tool measurement	CUTTING DIRECTION (M3 = -)?
TT:R-OFFS	Automatic tool length measurement: tool offset between stylus center and tool center. Preset value: tool radius R	TOOL OFFSET: RADIUS ?
TT:L-OFFS	Automatic tool radius measurement: tool offset in addition to MP 6530 (see page 11-6) between upper edge of stylus and lower edge of tool. Preset value: 0	TOOL OFFSET: LENGTH ?
LBREAK	Automatic tool measurement: permissible deviation from tool length L for break detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	BREAK TOLERANCE: LENGTH ?
RBREAK	Automatic tool measurement: permissible deviation from tool radius R for break detection. If the entered value is exceeded, the TNC locks the tool (status L). Input range: 0 to 0.9999 mm	BREAK TOLERANCE: RADIUS ?

Overview: Information in tool tables

Pocket table for tool changer

The **TOOL_P** table (for tool pocket) is programmed in a program run operating mode.

The soft key NEW POCKET TABLE (or RESET POCKET TABLE) is for erasing an existing pocket table and writing a new one.

Like the tool table, a pocket table can also be read in and read out directly through the data interface (see page 4-11).

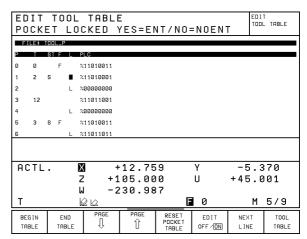


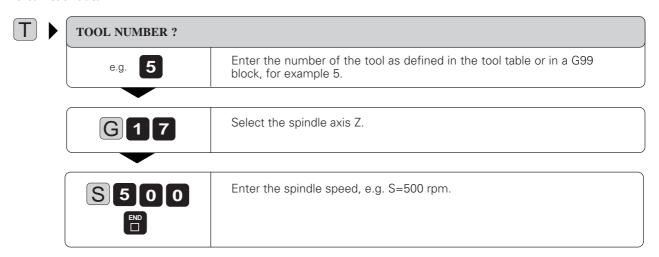
Fig. 4.6: Pocket table for the tool changer

To select the pocket table:

To edit the pocket table:

Abbreviation	Input	Dialog
Р	Pocket number of the tool	_
Т	Tool number	TOOL NUMBER
F	Fixed tool number. The tool is always returned to the same pocket.	FIXED POCKET YES = ENT / NO = NOENT
L	Locked pocket	POCKET LOCKED YES = ENT / NO = NOENT
ST	Special tool with a large radius requiring several pockets in the tool magazine. If your special tool takes up pockets in front of and behind its actual pocket, these additional pockets need to be locked.	SPECIAL TOOL
PLC	Information on this tool pocket that is to be sent to the PLC	PLC STATUS

Overview: Information in pocket tables


4.2 Tools

Calling tool data

The following data can be programmed in the NC block with T:

- Tool number, Q parameter
- Working plane with G17/G18 or G19
- Spindle speed S

To call tool data:

Resulting NC block: T5 G17 S500

Tool pre-selection with tool tables

If you are using tool tables, G51 pre-selects the next tool. Enter the tool number or a corresponding Q parameter.

Tool change

The tool change function can vary depending on the individual machine tool. Your machine manual provides more information on this function.

Automatic tool change

If your machine has automatic tool changing capability, the TNC controls the replacement of the inserted tool by another from the tool magazine. The program run is not interrupted.

Manual tool change

To change the tool manually, stop the spindle and move the tool to the tool change position. Sequence of action:

- Move to the tool change position (under program control, if desired)
- Interrupt program run (see page 3-5)
- Change the tool
- Resume the program run (see page 3-6)

4.2 Tools

Tool change position

A tool change position must be located next to or above the workpiece where no collisions are possible. With the miscellaneous functions M91 and M92 (see page 5-39) you can enter machine-referenced (rather than workpiece-referenced) coordinates for the tool change position.

If T0 is programmed before the first tool call, the TNC moves the tool spindle in the tool axis to a position that is independent of the tool length.

If a positive length compensation was in effect before T0, the clearance to the workpiece will be reduced.

Automatic tool change: M101

This function can vary depending on the individual machine tool. Your machine manual provides more information on M101.

Standard behavior - without M101

When the tool reaches the maximum tool life (TIME1), the TNC flags this information in the TNC memory. The machine tool builder determines how the individual machine tool will respond to this condition (refer to the machine manual).

Automatic tool change - with M101

The TNC automatically changes the tool if the tool life (TIME1 or TIME2) expires during program run. However, the tool is not changed immediately after expiration of the tool life, but, depending on the workload of the processor, a few NC blocks later.

Duration of effect

M101 is reset with M102.

Standard NC blocks with radius compensation G40, G41, G42

The radius of the replacement tool must be the same as that of the original tool. If the radii are not equal, the TNC displays an error message and does not replace the tool.

4.3 Tool Compensation Values

For each tool, the TNC offsets the spindle path in the tool axis by the compensation value for the tool length and in the working plane by the compensation value for the tool radius.

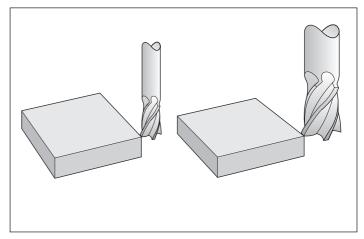


Fig. 4.7: The TNC compensates both the length and radius of the tool

Effect of tool compensation values

Tool length

Length compensation becomes effective automatically as soon as a tool is called and the tool axis moves.

To cancel length compensation, call a tool with length L=0.

If a positive length compensation was active before tool T0 was called, the distance to the workpiece will be reduced. With a G91 movement in the tool axis after a tool call with T, the length difference between the previous tool and the new tool will be traversed in addition to the programmed value.

Tool radius

Radius compensation becomes effective as soon as a tool is called and is moved in the working plane with G41 or G42.

To cancel radius compensation, program a positioning block with G40.

Tool radius compensation

A tool movement can be programmed:

- Without radius compensation (G40)
- With radius compensation (G41 or G42)
- As paraxial movements (G43 or G44)

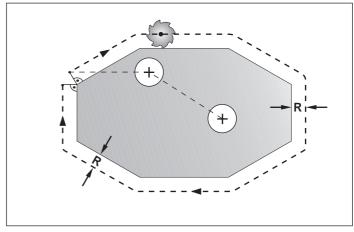


Fig. 4.8: Programmed contour (--, +) and the path of the tool center (---)

Movement without radius compensation: G40

The tool center moves to the programmed coordinates.

Applications:

- Drilling and boring
- · Pre-positioning

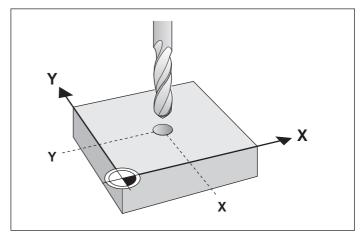


Fig. 4.9: These drilling positions are entered without radius compensation

Tool movement with radius compensation: G41, G42

- Between two program blocks with different radius compensations you must program at least one block without radius compensation (that is, with G40).
- · Radius compensation does not come into effect until the end of the block in which it is first programmed.
- Whenever radius compensation is activated or cancelled, the TNC positions the tool perpendicular to the programmed starting or end position. Position the tool at a sufficient distance from the first (or last) contour point to prevent the possibility of damaging the contour.

The tool center moves to the left (G41) or right (G42) of the programmed contour at a distance equal to the radius. "Left" and "right" are to be understood as based on the direction of tool movement, assuming a stationary workpiece.

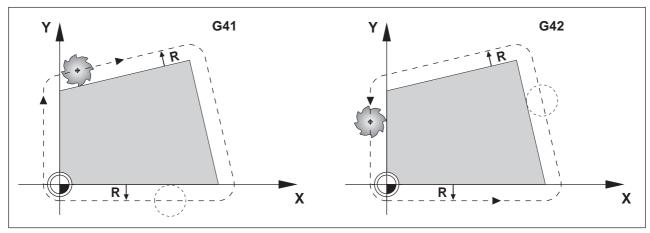


Fig. 4.10: The tool moves to the left (G41) or right (G42) of the path during milling

Shortening or lengthening single-axis movements: G43, G44

This type of radius compensation is only possible for single-axis movements in the working plane. The programmed tool path is lengthened (G43) or shortened (G44) by the tool radius.

Applications:

- Single-axis machining
- Occasionally for pre-positioning the tool, such as for cycle G47 SLOT MILLING.

- You can enable G43 and G44 by programming a positioning block with an axis key.
- The machine tool builder can set machine parameters to inhibit programming of single-axis positioning blocks.

4.3 Tool Compensation Values

Machining corners

If you are working without radius compensation, you can influence the machining of outside corners with M90 (see page 5-36).

Outside corners

The TNC moves the tool in a transitional arc around outside corners. The tool "rolls around" the corner point.

If necessary, the feed rate F is automatically reduced at outside corners to reduce stress on the machine, for example with very great changes in direction

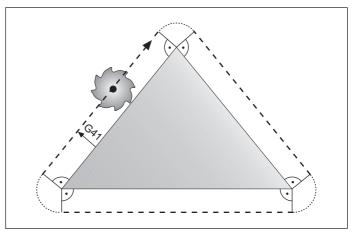


Fig. 4.11: The tool "rolls around" outside corners

Inside corners

To prevent the tool from damaging the contour, be careful not to program the starting (or end) positions for machining inside corners at a corner of the contour.

The TNC calculates the intersection of the tool center paths at inside corners. From this point it then starts the next contour element. This prevents damage to the workpiece.

The permissible tool radius, therefore, is limited by the geometry of the programmed contour.

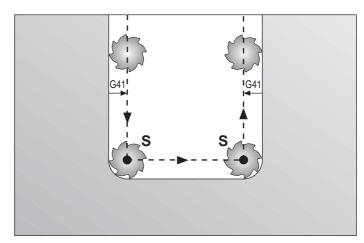


Fig. 4.12: Tool path for inside corners

4.4 Program Creation

Defining the blank form

If you wish to use the TNC's graphic workpiece simulation you must first define a rectangular workpiece blank. Its sides lie parallel to the X, Y and Z axes and can be up to 30,000 millimeters long.

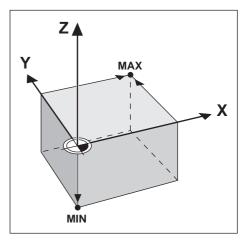
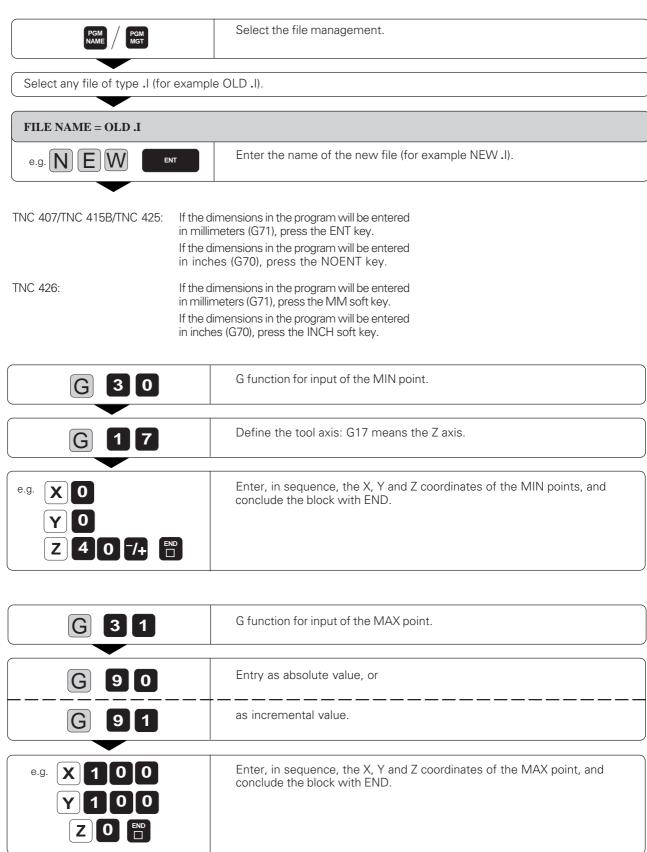


Fig. 4.13: MIN and MAX points define the blank form.

The ratio of the blank-form side lengths must be less than 200:1.


MIN and MAX points

The blank form is defined by two of its corner points:

- MIN point: smallest X, Y and Z coordinates of the blank form, entered as absolute values.
- MAX point: largest X, Y and Z coordinates of the blank form, entered as absolute or incremental values.

4.4 Program Creation

To create a new part program:

The following blocks then appear on the TNC screen as program text:

% NEW G71 *

Block 1: Program begin, name, dimensional unit

N10 G30 G17 X+0 Y+0 Z-40 *

Block 2: Tool axis, MIN point coordinates

N20 G31 G90 X+100 Y+100 Z+0 *

Block 3: MAX point coordinates

N99999 % NEW G71 *

Block 4: Program end, name, dimensional unit

The dimensional unit used in the program appears behind the program name (G71 = millimeters).

4.5 Entering Tool-Related Data

Besides the tool data and compensation, you must also enter the following information:

- Feed rate F
- · Spindle speed S
- Miscellaneous functions M

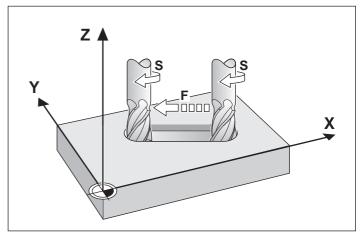
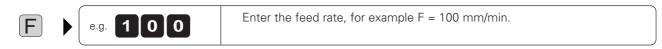


Fig. 4.14: Feed rate F and spindle speed S of the tool

Feed rate F


The feed rate is the speed (in millimeters per minute or inches per minute) at which the tool center moves.

Input range:

F = 0 to 300,000 mm/min (1181 ipm)

The maximum feed rate is set individually for each axis by means of machine parameters.

Input

Rapid traverse

Rapid traverse is programmed directly with G00.

Duration of feed rate F

A feed rate entered as a numerical value remains in effect until the control encounters a block with a different feed rate.

If the new feed rate is G00 (rapid traverse), then after the next block with G01 the feed rate will return to the last feed rate entered as a numerical value.

Changing the feed rate F

You can adjust the feed rate with the override knob on the TNC keyboard (see page 2-6).

4.5 Entering Tool-Related Data

Spindle speed S

The spindle speed S is entered in revolutions per minute (rpm).

Input range: S = 0 to 99,999 rpm

To change the spindle speed S in the part program:

Enter the spindle speed S, for example 1000 rpm.

Resulting NC block: T1 G17 S1000

To adjust the spindle speed S during program run:

On machines with stepless spindle drives, the spindle speed S can be varied with the override knob.

4.6 Entering Miscellaneous Functions and Program Stop

Some M functions are not effective on certain machines. The machine tool builder may also add some of his own M functions. Refer to your machine manual for more information.

The M functions (M for miscellaneous) affect:

- Program run
- Machine functions
- Tool behavior

The back cover foldout of this manual contains a list of M functions that are predetermined for the TNC. The list indicates whether an M function becomes effective at the start or at the end of the block in which it is programmed.

An NC block can contain several M functions as long as they are independent of each other. Refer to the overview on the last cover page to see how the M functions are grouped.

A program run or test run will be interrupted when it reaches a block containing G38.

If you wish to interrupt the program run or test run for a certain length of time, use the Cycle G04: DWELL TIME (see page 8-53).

4.7 Actual Position Capture

Sometimes you may want to enter the actual position of the tool in a particular axis as a coordinate in a part program. Instead of reading the actual position values and entering them with the numeric keypad, you can simply press the "actual position capture" key (see illustration at right). You can use this feature to enter, for example, the tool length.

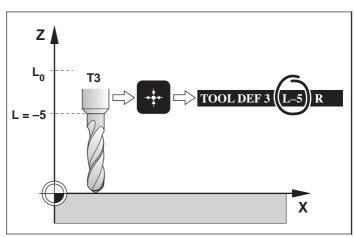
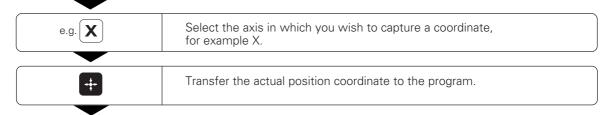


Fig. 4.15: Storing the actual position in the TNC

To capture the actual position:


MANUAL OPERATION

Move the tool to the position that you wish to capture.

PROGRAMMING AND EDITING

Select or create the program block in which you wish to enter the actual position of the tool.

Enter the radius compensation according to the position of the tool relative to the workpiece.

4.8 Integrated Pocket Calculator

With the CALC key you can open an additional window for performing calculations.

The calculator is operated with short commands through the ASCII keyboard. The commands are shown in a special color in the calculator window. The calculator can perform the following mathematical operations:

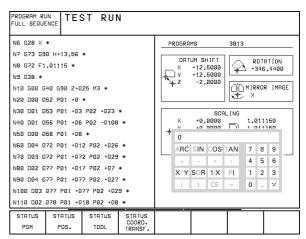


Fig. 4.16: The TNC's pocket calculator

Mathematical function	Command
Addition	+
Subtraction	_
Multiplication	*
Division	:
Sine	S
Cosine	С
Tangent	Т
Arc sine	AS
Arc cosine	AC
Arc tangent	AT
Powers	٨
Square root	Q
Inversion	/
Parenthetic calculations	()
π (3.14159265359)	Р
Display result	=

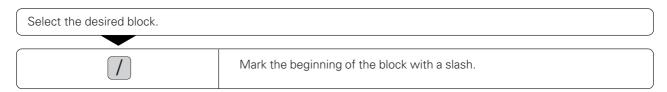
To move the pocket calculator:

➤ Press the arrow keys.

To close the pocket calculator:

➤ Press the CALC key again.

Example:


Find the sine of 30° and multiply by 50.

- ➤ Press the CALC key.
- ➤ Enter the number 30.
- > Press the S key (for sine) on the ASCII keyboard.
- ➤ Press the * on the ASCII keyboard.
- ➤ Enter the number 50.
- ➤ Press the = key on the ASCII keyboard, the TNC displays the result (25) at the top of the calculator. You can use the "actual position capture" key to transfer the result to the highlight position in the current block (only available in the PROGRAMMING AND EDITING mode of operation).

4.9 Marking Blocks for Optional Block Skip

You can mark program blocks so that the TNC will skip them during a program or test run whenever the block skip option is active (see page 3-10).

To mark a block:

- Blocks containing a tool definition (G99) cannot be skipped.
- To skip cycles, program the slash in the first block of the cycle.

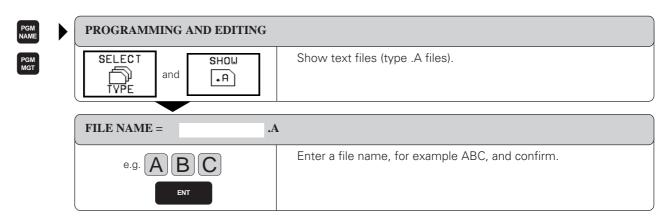
To erase the slash:

Select the block that contains the slash to be erased.

Erase the slash at the beginning of the block.

4.10 Text Files

You can use the TNC's text editor to write and edit texts.


Typical applications:

- Recording test results
- Documenting working procedures
- · Keeping formulas and creating cutting data diagrams

The text editor can edit only type .A files (text files). If you want to edit other types of files with the text editor, you must first convert them (see pages 1-39 and 1-43).

The typewriter-style keyboard provides letters, symbols and function keys (e.g., backspace) that you need to create and change texts. The soft keys enable you to move around in the text and to find, delete, copy and insert letters, words, sections of text (text blocks), or entire files.

To create a text file:

The following information is visible in the highlighted line at the top of the text window:

FILE: Name of the current text file
 LINE: Line in which the cursor is presently located

• COLUMN: Column in which the cursor is

presently located

• INSERT: Insert new text, pushing the existing text to the right

OVERWRITE: Write over the existing text, erasing it where it is replaced

with the new text.

You can toggle between the INSERT and OVER-WRITE modes with the soft key at the far left. The selected mode is shown enclosed in a frame.

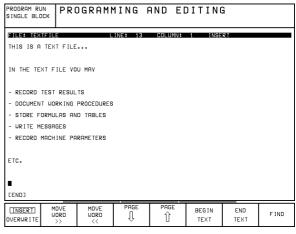
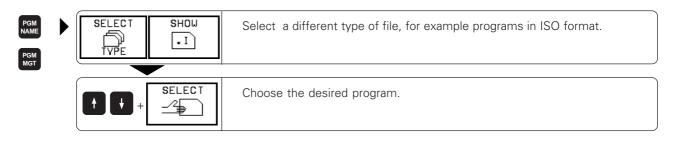



Fig. 4.17: TNC text editor screen

To leave a text file:

The text that you type always appears on the screen where the cursor is located. You can move the cursor with the cursor keys and the following soft keys:

Function	Soft key
Move one word to the right	MOVE WORD >>
Move one word to the left	MOVE WORD <<
Go to the next screen page	PAGE
Go to the previous screen page	PAGE
Go to beginning of file	BEGIN TEXT
Go to end of file	END TEXT

In each screen line you can enter up to 77 characters from the alphabetic and numeric keypads.

The alphabetic keyboard offers the following function keys for editing text:

Function	Key
Begin a new line	RET
Erase character to left of cursor (backspace)	X
Insert a blank space	SPACE

Exercise:

Write the following text in the file ABC.A. You will need it for the exercises in the next few pages.

JOBS
!! IMPORTANT:

MACHINE THE CAMS (ASK THE BOSS?!) PROGRAM 1375.H; 80% OK BY LUNCH

TOOLS
TOOL 1 DO NOT USE
TOOL 2 CHECK
REPLACEMENT TOOL: TOOL 3

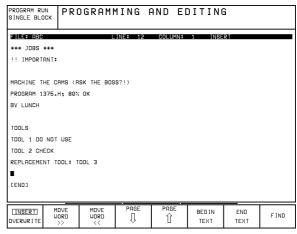
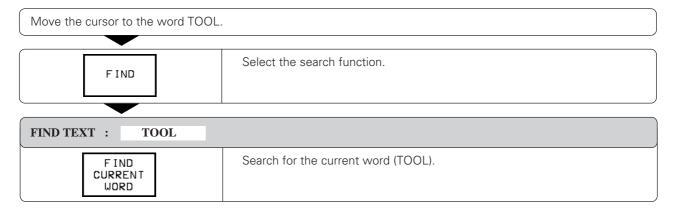


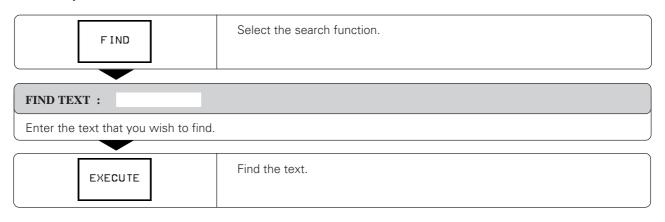
Fig. 4.18: Text editor screen with exercise text

4.10 Text Files

Finding text sections

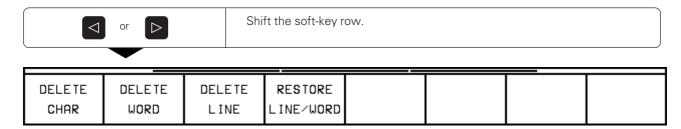

You can search for a desired character or word with FIND at the far right of the first soft-key row. The following functions then appear:

FIND CURRENT WORD			EXECUTE	END


Finding the current word

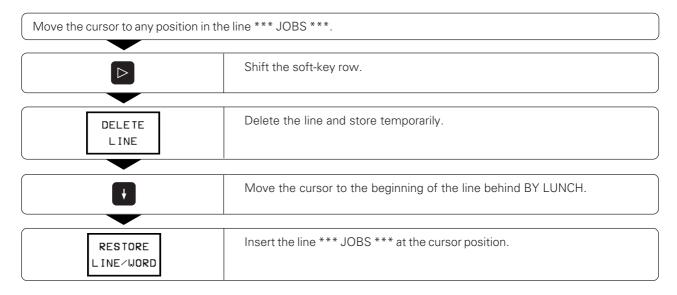
You can search for the next occurrence of the word in which the cursor is presently located.

Exercise: Find the word TOOL in the file ABC.A


To find any text:

To leave the search function:

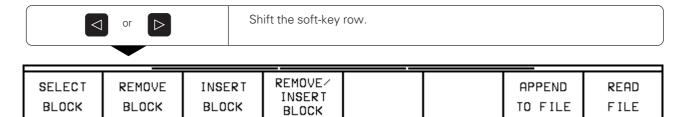
END	Terminate the search function.
-----	--------------------------------


To erase and insert characters, words and lines:

Move the cursor to the text that you wish to erase, or to the place where you wish to insert text.

Function	Soft key
Delete a character	DELETE CHAR
Delete and temporarily store a word	DELETE WORD
Delete and temporarily store a line	DELETE LINE
Insert a line/word from temporary storage	RESTORE LINE/WORD

Exercise: Delete the first line of ABC.A and insert it behind BY LUNCH

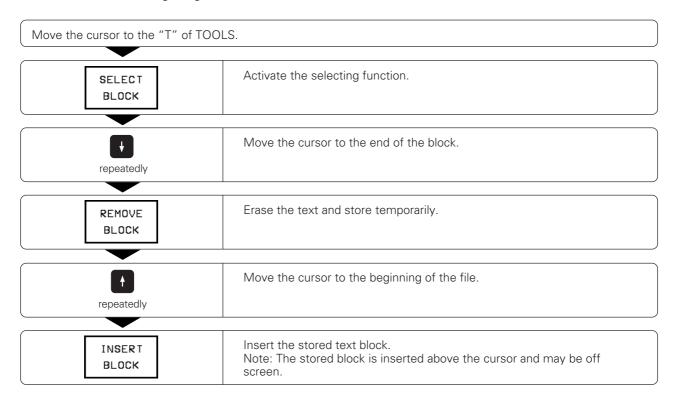

Temporarily stored words and lines can be inserted as often as desired.

4.10 Text Files

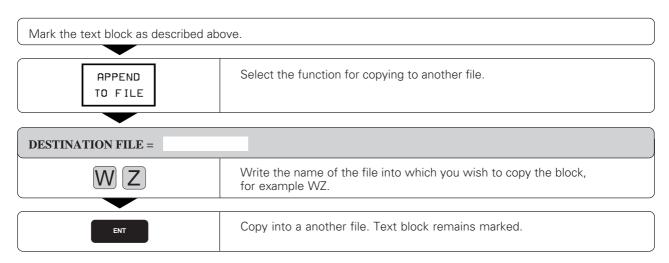
Editing text blocks

With the editor, text blocks (sections of text) of any size can be

- selected
- deleted
- inserted at the same or other locations
- copied (even whole files)



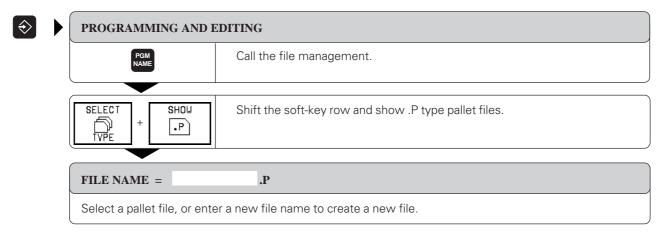
Function	Soft key
To select a block: Place the cursor at one end of the block and press SELECT BLOCK. Then move the cursor to the other end. The selected block has a different color than the rest of the text.	SELECT BLOCK
Delete the selected text and store temporarily	REMOVE BLOCK
Insert the temporarily stored text at the cursor location	INSERT BLOCK
Store marked block temporarily without erasing	REMOVE/ INSERT BLOCK
Transfer the selected text to another file: Type the name of the target file in the screen dialog line and press ENT. The TNC appends the selected text to the end of the specified file. You can also create a new file with the selected text in this way.	APPEND TO FILE
Insert another file at the cursor position: Write the name of the source file in the screen dialog line and press ENT.	READ FILE


Exercise:

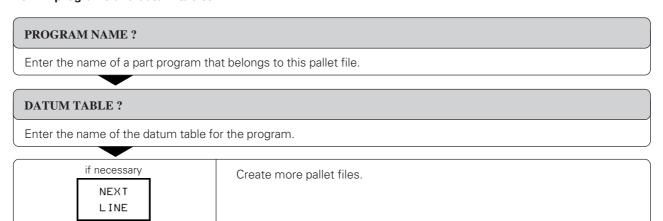
Move the last four lines in the file ABC.A to the beginning of the file, then copy them into a new file WZ.A.

• Move the text to the beginning of the file:

• Select the text again and copy it into another file:


4.11 Creating Pallet Files

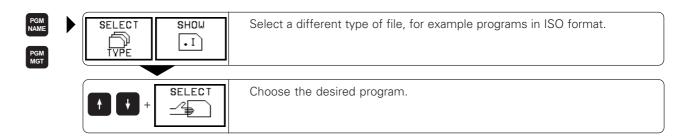
Pallet files are used with machining centers, and contain the following information:


Pallet number
 PAL

Part program name PGM NAMEDatum table DATUM

To edit pallet files:

To link programs and datum tables:


Pallet files are managed and output as determined in the PLC. The machine manual provides further information on this.

Functions for editing pallet tables

The following functions help you to create and change pallet tables:

	Key/ Soft key
Move the highlight vertically	† †
Move the highlight horizontally	+ +
Go to the beginning of the table	BEG IN TABLE
Go to the end of the table	END TABLE
Go to the next page of the table	PAGE ∏
Go to the previous page of the table	PAGE Î
Insert the last line in the table	INSERT LINE
Delete the last line in the table	DELETE LINE
Go to the beginning of the next line	NEXT LINE

To leave the pallet file:

4.12 Adding Comments to the Program

Comments can be added to the part program in the PROGRAMMING AND EDITING mode of operation.

Applications:

- Explanations of program steps
- Adding general notes

Adding comments to program blocks

You can add comments to a program block immediately after entering the data by pressing the semicolon key (;) on the alphabetic keyboard.

Input:

 Enter your comment and conclude the block by pressing the END key.

To add a comment to a block that has already been entered, select the block and press a horizontal arrow key until the semicolon and the dialog prompt appear.

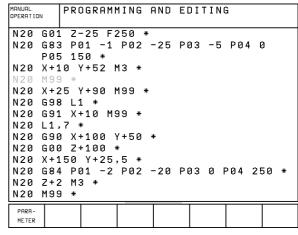
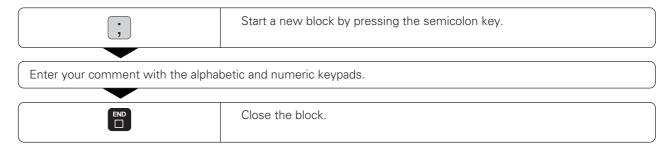



Fig. 4.19: Dialog for entering comments

To enter a comment as a separate block:

Comments are added behind the entered blocks.

Example

```
.
N50 G00 X+0 Y-10 *
; PRE-POSITIONING....... A comment is indicated by a semicolon at the beginning of the block.
N60 G01 G41 F100 *
.
```

5.1 General Information on Programming Tool Movements

Tool movements are always programmed as if the tool moves and the workpiece remains stationary.

Before running a part program, always pre-position the tool to prevent the possibility of damaging it or the workpiece. Radius compensation and a path function must remain active.

Example NC block: N30 G00 G40 G90 Z+100 *

Path functions

Each element of the workpiece contour is entered separately using path functions. You enter:

- Straight lines
- Circular arcs

You can also program a combination of the two contour elements (helical paths).

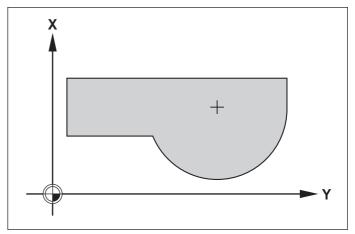


Fig. 5.1: A contour consists of straight lines and circular arcs

The contour elements are executed in sequence to machine the programmed contour.

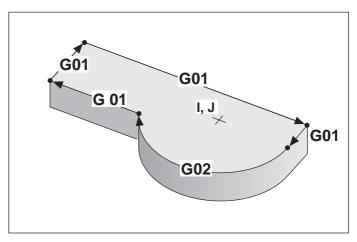


Fig. 5.2: Contour elements are programmed and executed in sequence

5.1 General Information on Programming Tool Movements

Subprograms and program section repeats

If a machining sequence occurs several times in a program, you can save time and reduce the chance of programming errors by entering the sequence once and then defining it as a subprogram or program section repeat.

Programming variants:

- Repeating a machining routine immediately after it is executed (program section repeat)
- Inserting a machining routine at certain locations in a program (subprogram)
- Calling a separate program for execution or test run within the main program (program call)

Cycles

Common machining routines are delivered with the control as standard cycles for:

- Peck drilling
- Tapping
- Slot milling
- · Pocket and island milling

Coordinate transformation cycles can be used to change the coordinates of a machining sequence in a defined way. Examples:

- · Datum shift
- Mirroring
- Basic rotation
- Enlarging and reducing

Parametric programming

Instead of programming numerical values, you enter markers called *parameters* which are defined through mathematical functions or logical comparisons. You can use parametric programming for:

- Conditional and unconditional jumps
- Measurements with the 3D touch probe during program run
- Output of values and messages
- Transferring values to and from memory

The following mathematical functions are available:

- Assign
- Addition/Subtraction
- Multiplication/Division
- Angle measurement/Trigonometry

among others.

5.2 Contour Approach and Departure

A convenient way to approach or depart the workpiece is on an arc which is tangential to the contour. This is carried out with the approach/departure function G26 (see page 5-6).

Starting point and end point

Starting point

From the starting point, the tool moves to the first contour point. The starting point is programmed without radius compensation.

The starting point must be:

- Approachable without collision
- · Near the first contour point
- Located in relation to the workpiece such that no contour damage occurs when the contour is approached.

If the starting point is located within the shaded area of fig. 5.4, the contour will be damaged when the first contour point is approached. The optimum starting point (§) is located in the extension of the tool path for machining the first contour.

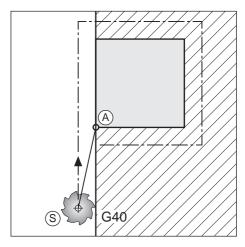


Fig. 5.3: Starting point (S) of machining

First contour point

Machining begins at the first contour point. The tool moves to this point with radius compensation.

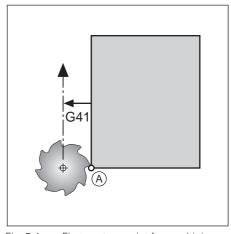


Fig. 5.4: First contour point for machining

Approaching the starting point in the spindle axis

When the starting point (§) is approached, the spindle axis is moved to working depth.

If there is danger of collision, approach the starting point in the spindle axis separately.

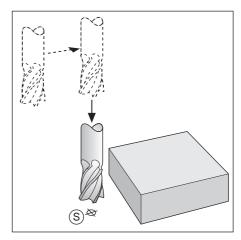


Fig. 5.5 : Separate movement of the spindle when there is danger of collision

5.2 Contour Approach and Departure

End point

Similar requirements hold for the end point:

- Can be approached without collision
- Near the last contour point
- Avoids tool damage

The ideal location for the end point (a) is again in the extension of the tool path outside of the shaded area. It is approached without radius compensation.

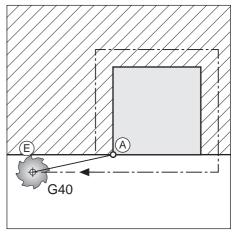


Fig. 5.6: End point (E) for machining

Departure from an end point in the spindle axis

The spindle axis is moved separately.

Example: G00 G40 X ... Y ... Approach end point Z+50 Retract tool

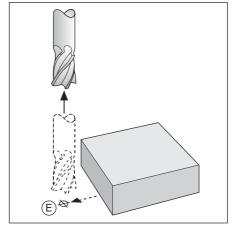


Fig. 5.7: Retract spindle axis separately

Common starting and end point

Outside of the shaded areas in the illustrations, it is possible to define a single point as both the starting and end point (£).

The ideal location for the starting and end point is exactly between the extensions of the tool paths for machining the first and last contour elements.

A common starting and end point is approached without radius compensation.

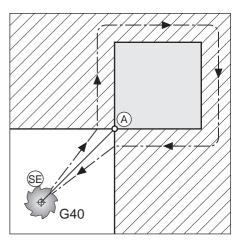


Fig. 5.8: Common starting and end point

5.2 Contour Approach and Departure

Tangential approach and departure

The tool approaches the contour on a tangential arc with G26, and departs it with G27. This prevents dwell marks.

Starting point and end point

Starting point (§) and end point (£) of the machining sequence are off the workpiece near the first or last contour element.

The tool path to the starting point or end point is programmed without radius compensation.

Input

- For the approach path, G26 is programmed after the block containing the first contour point (the first block with radius compensation G41/ G42).
- For the departure path, G27 is programmed after the block containing the last contour point (the last block with radius compensation G41/ G42).

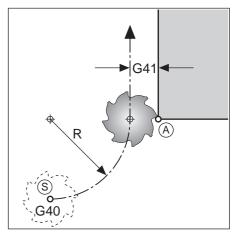


Fig. 5.9: Soft contour approach

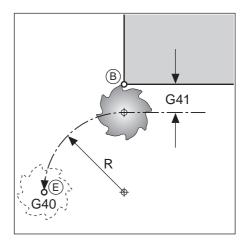


Fig. 5.10: Soft contour departure

Program structure

The radius in G26/G27 must be selected such that it is possible to perform the circular arc between the contour point and the starting point or end point.

5.3 Path Functions

General information

Part program input

You create a part program by entering the workpiece dimensions. Coordinates are programmed as absolute values (G90) or relative values (G91).

In general, you program the coordinates of the end point of the contour element.

The TNC automatically calculates the path of the tool based on the tool data and the radius compensation.

Machine axis movement under program control

All axes programmed in a single block are moved simultaneously.

Paraxial movement

The tool moves in a path parallel to the programmed axis.

Number of axes programmed in the block: 1

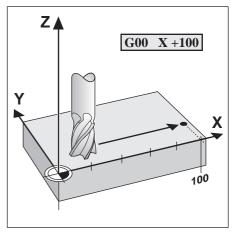


Fig. 5.11: Paraxial movement

Movement in the main planes

The tool moves to the programmed position on a straight line or circular arc in a plane.

Number of axes programmed in the block: 2

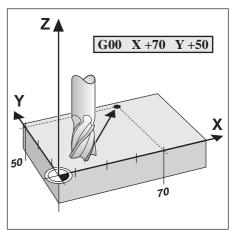


Fig. 5.12: Movement in a main plane (XY)

5.3 Path Functions

Movement of three machine axes (3D movement)

The tool moves in a straight line to the programmed position.

Number of axes programmed in the block: 3

Exception: A helical path is created by combining a circular with a linear

movement.

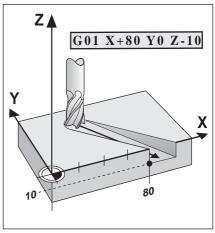


Fig. 5.13: Three-dimensional movement

407

Entering more than three coordinates

The TNC can control up to five axes simultaneously (for example, three linear and two rotary axes).

Such programs are too complex to program at the machine, however.

Advantages of five-axis machining of 3D surfaces:

- Cylindrical end mills can be used (inclined-tool milling)
- Faster machining
- Better surface definition

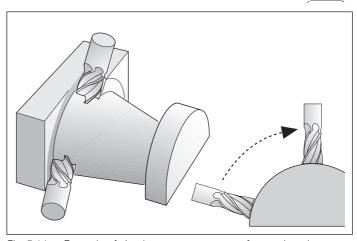


Fig. 5.14: Example of simultaneous movement of more than three axes: machining a 3D surface with an end mill

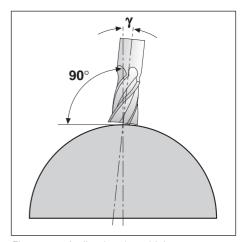


Fig. 5.15: Inclined-tool machining

Input example:

G01 G40 X+20 Y+10 Z+2 A+15 C+6 F100 M3 (three linear and two rotary axes)

The additional coordinates are programmed as usual in a G01 block.

The TNC graphics cannot simulate four- or five-axis movements.

5.3 Path Functions

Overview of path functions

Function	Input in Cartesian coordinates	Input in polar coordinates
Straight line at rapid traverse Straight line at programmed feed rate	G00 G01	G10 G11
Chamfer with length R. A chamfer is inserted between two straight lines.	G24	
Circle center – also the pole for polar coordinates. I,J,K generates no movement.	I, J, K	
Circular arc, clockwise (CW) Circular arc, counterclockwise (CCW) Programming of the circular path: • Circle center I, J, K and end point, or • Circle radius and end point.	G02 G03	G12 G13
Circular movement without direction of rotation. The circular path is programmed with the radius and end point. The direction of rotation results from the last programmed circular movement G02/G12 or G03/G13.	G05	G15
Circular movement with tangential connection. An arc with tangential transition is inserted into the preceding contour element. Only the end point of the arc has to be programmed.	G06	G16
Corner rounding with radius R. An arc with tangential transitions is inserted between two contour elements.	G25	

5.4 Path Contours - Cartesian Coordinates

G00: Straight line with rapid traverse

G01: Straight line with feed rate F ...

To program a straight line, you enter:

- The coordinates of the end point (E) of the straight line
- If necessary: radius compensation, feed rate, miscellaneous function

The tool moves in a straight line from its current position to the end point (E). The starting position (S) is approached in the preceding block.

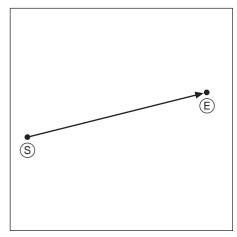
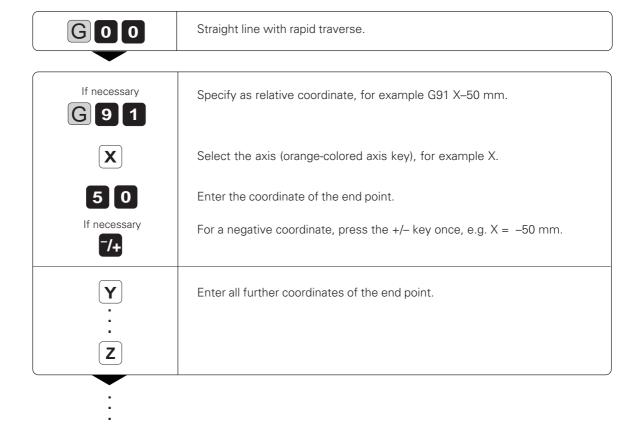
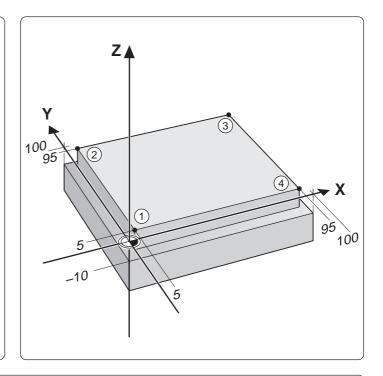



Fig. 5.16: Linear movement

To program a straight line:



Path Contours - Cartesian Coordinates

The TNC moves the tool with radius compensation left of the **G** 4 1 programmed contour. The TNC moves the tool with radius compensation right of the G 4 2 programmed contour. The TNC moves the tool center directly to the end point. Enter miscellaneous function, for example M3 (spindle on, clockwise rotation). When all coordinates have been entered, conclude the block with END.

Resulting NC block: N25 G00 G42 G91 X+50 G90 Y+10 Z-20 M3 *

Example for exercise: Milling a rectangle

## Begin the program. Program name S512I, dimensions in millimeters ## N10 G30 G17 X+0 Y+0 Z-20 * ## N20 G31 G90 X+100 Y+100 Z+0 * ## N30 G99 T1 L+0 R+5 * ## N40 T1 G17 S2500 * ## N50 G00 G40 G90 Z+100 M06 * ## Retract in the infeed axis Z (G17); ## Spindle speed S = 2500 rpm ## N50 G00 G40 G90 Z+100 M06 * ## Retract in the infeed axis; rapid traverse; miscellaneous function for tool change ## N60 X-10 Y-10 * ## N70 Z-10 M03 * ## Pre-position near the first contour point ## N70 Z-10 M03 * ## Pre-position in the infeed axis, spindle ON ## N80 G01 G41 X+5 Y+5 F150 * ## Move to ① with radius compensation ## N90 Y+95 * ## Move to corner point ② ## N10 X+95 * ## Move to corner point ③ ## N110 Y+5 * ## Move to corner point ④ ## N120 X+5 * ## Move to corner point ①, end of machining ## N130 G00 G40 X-10 Y-10 M05 * ## Depart the contour, cancel radius compensation, spindle STOP ## N140 Z+100 M02 * ## Retract in the infeed axis, spindle OFF, coolant OFF,	Part program	
N10 G30 G17 X+0 Y+0 Z-20 * N20 G31 G90 X+100 Y+100 Z+0 * Define blank form for graphic workpiece simulation (MIN and MAX point) N30 G99 T1 L+0 R+5 * Define tool in the program N40 T1 G17 S2500 * Call tool in the infeed axis Z (G17); Spindle speed S = 2500 rpm N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * N70 Z-10 M03 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N110 Y+5 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,	%S512l G71 *	
N20 G31 G90 X+100 Y+100 Z+0 * Define blank form for graphic workpiece simulation (MIN and MAX point) N30 G99 T1 L+0 R+5 * Define tool in the program N40 T1 G17 S2500 * Call tool in the infeed axis Z (G17); Spindle speed S = 2500 rpm N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,	N10 C20 C17 V · 0 V · 0 7 20 *	almensions in millimeters
(MIN and MAX point) N30 G99 T1 L+0 R+5 * Define tool in the program N40 T1 G17 S2500 * Call tool in the infeed axis Z (G17); Spindle speed S = 2500 rpm N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,		
N30 G99 T1 L+0 R+5 * Define tool in the program N40 T1 G17 S2500 * Call tool in the infeed axis Z (G17); Spindle speed S = 2500 rpm N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,	N20 G31 G90 X+100 Y+100 Z+0 *	
N40 T1 G17 S2500 *		
Spindle speed S = 2500 rpm N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,		
N50 G00 G40 G90 Z+100 M06 * Retract in the infeed axis; rapid traverse; miscellaneous function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,	N40 T1 G17 S2500 *	Call tool in the infeed axis Z (G17);
function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,		Spindle speed S = 2500 rpm
function for tool change N60 X-10 Y-10 * Pre-position near the first contour point N70 Z-10 M03 * Pre-position in the infeed axis, spindle ON N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,	N50 G00 G40 G90 Z+100 M06 *	Retract in the infeed axis; rapid traverse; miscellaneous
N60 X-10 Y-10 *		
N70 Z-10 M03 *	N60 X-10 Y-10 *	
N80 G01 G41 X+5 Y+5 F150 * Move to ① with radius compensation N90 Y+95 * Move to corner point ② N100 X+95 * Move to corner point ③ N110 Y+5 * Move to corner point ④ N120 X+5 * Move to corner point ①, end of machining N130 G00 G40 X-10 Y-10 M05 * Depart the contour, cancel radius compensation, spindle STOP N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,		
N90 Y+95 *		
N100 X+95 *		
N110 Y+5 *		
N120 X+5 *		
N130 G00 G40 X-10 Y-10 M05 *		
N140 Z+100 M02 * Retract in the infeed axis, spindle OFF, coolant OFF,		
	N 140 Z+ 100 NOZ	
program stop, return to block 1	NO0000 0/ 05401 074 *	program stop, return to block i
N99999 %S512I G71 * End of program	N99999 %S512I G/T *	End of program

G24: Chamfer

The chamfer function enables you to cut off corners at the intersection of two straight lines.

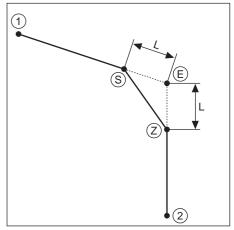


Fig. 5.17: Chamfer from (S) to (Z)

Enter the length (L) to be removed from each side of the corner.

Prerequisites

- The radius compensation before and after the chamfer block must be
- An inside chamfer must be large enough to accommodate the current

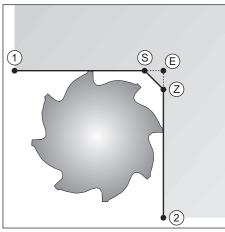
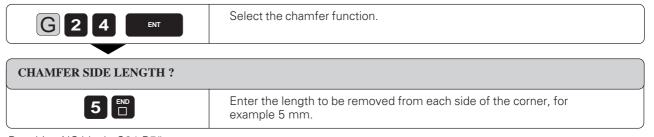
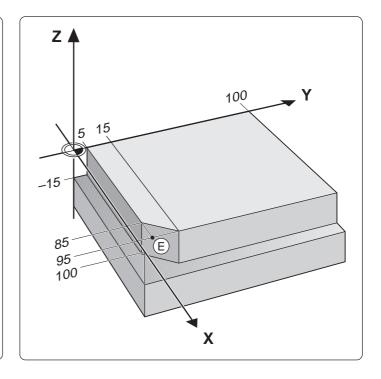



Fig. 5.18: Tool radius too large

- You cannot start a contour with a G24 block.
- A chamfer is only possible in the working plane.
- The feed rate for chamfering is the same as in the previous block.
- The corner point E is cut off by the chamfer and is not part of the contour.


To program a chamfer:

Resulting NC block: G24 R5*

Example for exercise: Chamfering a corner

Coordinates of the corner point: (E) X = 95 mm Y = 5 mmLength of chamfer: CHF = 10 mmTool radius: R = +10 mmMilling depth: Z = -15 mm

Part program

 %S514I G71 *
 Begin the program

 N10 G30 G17 X+0 Y+0 Z-20 *
 Workpiece blank MIN point

 N20 G31 G90 X+100 Y+100 Z+0 *
 Workpiece blank MAX point

 N30 G99 T5 L+5 R+10 *
 Define the tool

 N40 T5 G17 S2000 *
 Call the tool

 N50 G00 G40 G90 Z+100 M06 *
 Retract and insert tool

 N60 X-10 Y-5 *
 Pre-position in the working plane

 N70 Z-15 M03 *
 Move tool to working depth, move spindle to

 N80 G01 G42 X+5 Y+5 F200 *
 contour with radius compensation at machining feed rate

 N90 X+95 *
 First straight line for corner E

 N100 G24 R10 *
 Insert chamfer with length 10 mm

 N110 Y+100 *
 Second straight line for corner E

 N120 G00 G40 X+110 Y+110 *
 Depart the contour, cancel radius compensation

 N130 Z+100 M02 *
 Retract in the infeed axis

 N99999 %S514I G71 *

Circles and circular arcs

Here the TNC moves two axes simultaneously in a circular path relative to the workpiece.

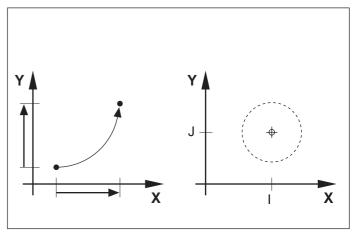


Fig. 5.19: Circular arc and circle center

Circle center I, J, K

You can define the circle center for circular movement.

A circle center also serves as reference (pole) for polar coordinates.

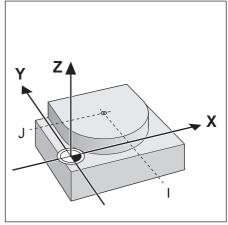


Fig. 5.20: Circle center coordinates

Direction of rotation

When a circular path has no tangential transition to another contour element, enter the mathematical direction of rotation:

- Clockwise direction of rotation is mathematically negative: G02
- Counterclockwise direction of rotation is mathematically positive: G03

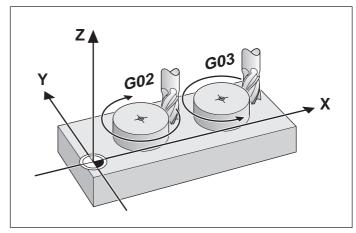


Fig. 5.21: Direction of rotation for circular movement

Radius compensation in circular paths

You cannot begin radius compensation in a circle block – it must be activated beforehand in a line block.

Circles in the main planes

When you program a circle, the TNC assigns it to one of the main planes. This plane is automatically defined when you set the spindle axis during a tool call (T).

Spindle axis	Main plane	Circle center
Z	XY G17 (UV, XV, UY)	IJ
Y	ZX G18 (WU, ZU, WX)	КІ
X	YZ G19 (VW, YW, VZ)	J K

Fig. 5.22: Defining the spindle axis also defines the main plane and the circle center designation

You can program circles that do not lie parallel to a main plane by using Q parameters (see Chapter 7).

Circle center I, J, K

For arcs programmed with G02/G03/G05, it is necessary to define the circle center. This is done in the following ways:

- Entering the Cartesian coordinates of the circle center
- Using the circle center defined in an earlier block
- Capturing the actual position

If G29 is programmed, the last programmed position is automatically used as the circle center or pole.

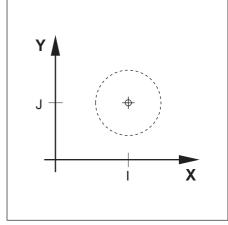


Fig. 5.23: Circle center I, J

Duration of circle center definition

A circle center definition remains in effect until a new circle center is defined.

Entering I, J, K incrementally

If you enter the circle center with incremental coordinates, you have programmed it relative to the last programmed position of the tool.

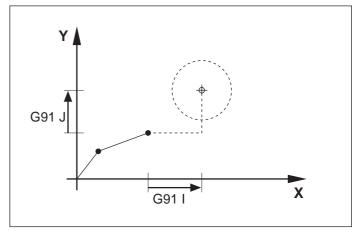


Fig. 5.24: Incremental coordinates for a circle center

- The circle center I, J, K also serves as the pole for polar coordinates.
- The only effect of I, J, K is to define a position as a circle center the tool does *not* move to the position.

To program a circle center (pole):

20	Select the first circle center designation, for example I. Enter the coordinate, for example I = 20 mm.
1 0 7/+ END	Select the second circle center designation, for example J. Enter the coordinate, for example J = –10 mm.

Resulting NC block: I+20 J-10 *

G02/G03/G05: Circular path around pole I, J, K

Prerequisites

The circle center I, J, K must be previously defined in the program. The tool is at the circle starting point (§).

Defining the direction of rotation

Direction of rotation:

Clockwise G02
 Counterclockwise G03
 No definition G05

 (the last programmed direction of rotation is used)

S I, J

Fig. 5.25: Circular path from (§) to (E) around I, J

Input

• End point of the arc

The starting and end points of the arc must lie on the circle. Input tolerance: up to 0.016 mm (selected with MP 7431).

• For a full circle, the end point in the G02/G03 block should be the same as the starting point of the contour.

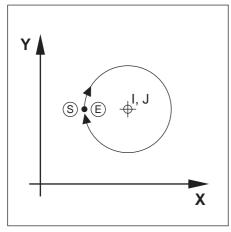


Fig. 5.26: Full circle around I, J with a G02 block

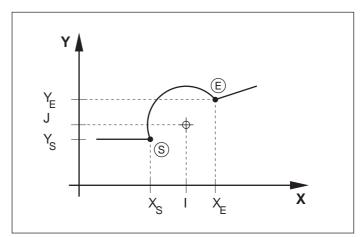
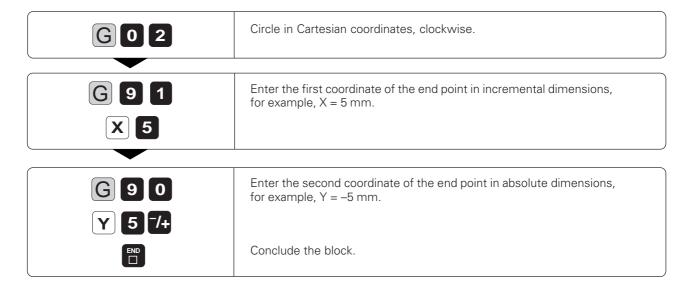
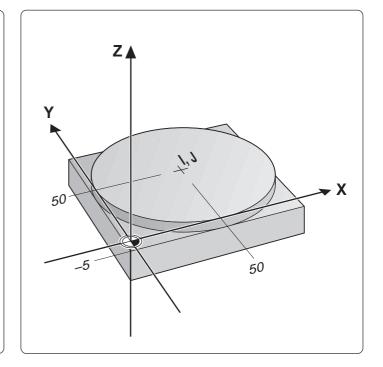



Fig. 5.27: Coordinates of an arc

To program a circular arc with G02 around a circle center I, J (direction of rotation = clockwise):



Further entries, if necessary:

- Radius compensation
- Feed rate
- Miscellaneous function

Resulting NC block: G02 G91 X+5 G90 Y-5

Example for exercise: Mill a full circle with one block

Part program

0/ CE201 C71 *	Degin the program
%S520I G71 *	
N10 G30 G17 X+1 Y+1 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 *	Workpiece blank MAX point
N30 G99 T6 L+0 R+15 *	Define the tool
N40 T6 G17 S1500 *	Call the tool
N50 G00 G40 G90 Z+100 M06 *	Retract and insert tool
N60 X+50 Y-40 *	Pre-position in the working plane
N70 Z-5 M03 *	Move tool to working depth
N80 I+50 J+50 *	Coordinates of the circle center
N90 G01 G41 X+50 Y+0 F100 *	Approach first contour point with radius compensation at
	machining feed rate
N100 G26 R10 *	Soft (tangential) approach
N110 G02 X+50 Y+0 *	Mill arc around circle center I,J; direction of rotation negative
	(clockwise); coordinates of end point $X = +50$ mm, $Y = +0$
N120 G27 R10 *	
N130 G00 G40 X+50 Y-40 *	Depart the contour, cancel radius compensation
N140 Z+100 M02 *	
N99999 %S520I G71 *	
)

G02/G03/G05: Circular path with defined radius

The tool moves on a circular path with radius R.

Defining the direction of rotation

Clockwise G02
 Counterclockwise G03
 No definition G05

 (the last programmed direction of rotation is used)

Inputs

- Coordinates of the end point of the arc
- Radius R of the arc

- For a full circle, two G02/G03 blocks must be programmed in succession.
- The distance from the starting and end points of the arc cannot be greater than the diameter of the circle.
- The maximum possible radius is 100 m.

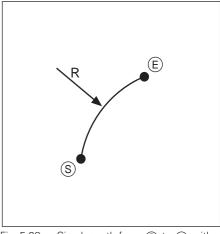


Fig. 5.28: Circular path from (§) to (E) with radius R

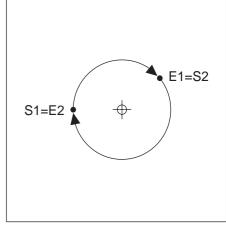


Fig. 5.29: Full circle with two G02 blocks

Central angle CCA and arc radius R

The starting point (§) and end point (Ē) on the contour can be connected with four different arcs of the same radius. The arcs have different lengths and curvatures.

Larger arc: CCA>180° (arc is longer than a semicircle) Input: Radius R with negative sign (R<0).

Smaller arc: CCA<180° (arc is shorter than a semicircle) Input: Radius R with positive sign (R>0).

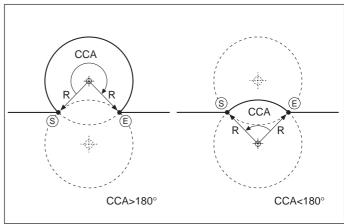


Fig. 5.30: Arcs with central angles greater than and less than 180°

Contour curvature and direction of rotation

The direction of rotation determines the type of arc:

· Convex (curving outward), or

• Concave (curving inward)

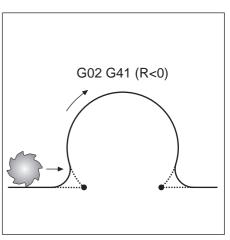


Fig. 5.31: Convex path

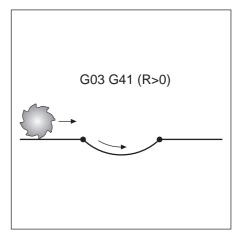
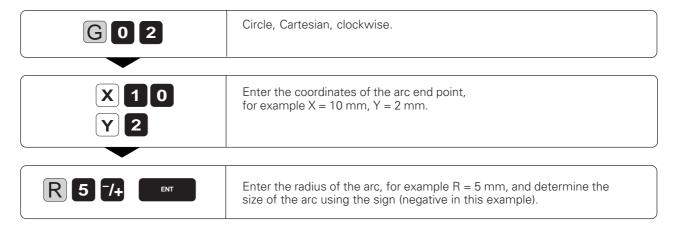



Fig. 5.32: Concave path

To program a circular arc with a defined radius:

Further entries, if necessary:


- Radius compensation
- Feed rate
- Miscellaneous function

Resulting NC block: G02 G41 X+10 Y+2 R-5

Example for exercise: Milling a concave semicircle

Semicircle radius: R = 50 mm

Coordinates of the arc starting point: X = 0 Y = 0Coordinates of the arc end point: X = 100 mm Y = 0Tool radius: X = 100 mm Y = 0Tool radius: X = 100 mm Y = 0 X = 100 mm Y = 0

Part program

%S523I G71 *	Begin the program
N10 G30 G17 X+0 Y+0 Z-20 *	Define the workpiece blank
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+25 *	Define the tool
N40 T1 G17 S780 *	Call the tool
N50 G00 G40 G90 Z+100 M06 *	Retract and insert tool
N60 X+25 Y-30 *	Pre-position in the working plane
N70 Z-18 M03 *	Move tool to working depth
N80 G01 G42 X+0 Y+0 F100 *	Approach the contour with radius compensation at
	machining feed rate
N90 G02 X+100 Y+0 R-50 *	
	radius = 50mm, direction of rotation negative
N100 G00 G40 X+70 Y-30 *	
N110 Z+100 M02 *	Retract in the infeed axis
N99999 %S523I G71 *	

G06: Circular path with tangential connection

The tool moves on an arc that starts at a tangent with the previously programmed contour element.

A transition between two contour elements is tangential when there is no kink or corner at the intersection between the two contours — the transition is smooth.

Input

Coordinates of the end point of the arc.

Prerequisites

- The contour element to which the arc with G06 is to tangentially connect must be programmed directly before the G06 block.
- Before the G06 block there must be at least two positioning blocks defining the contour element which tangentially connects to the arc.

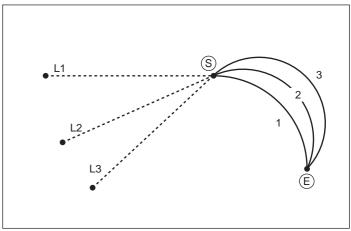


Fig. 5.33: The straight line 1 - 2 is connected tangentially to the circular arc \$ - $\textcircled{\texttt{E}}$

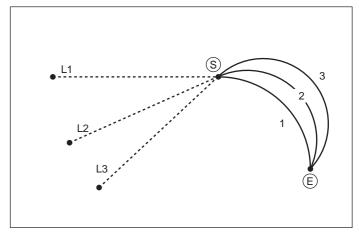
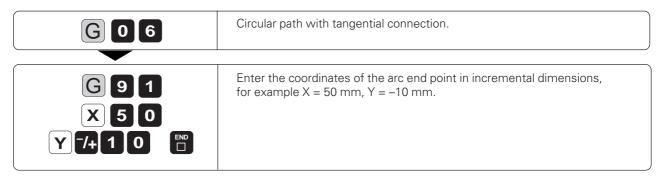



Fig. 5.34: The path of a tangential arc depends on the preceding contour element

A tangential arc is a two-dimensional operation: the coordinates in the G06 block and in the positioning block preceding it must be in the plane of the arc.

To program a circular path G06 with tangential connection:

Further entries, if necessary:

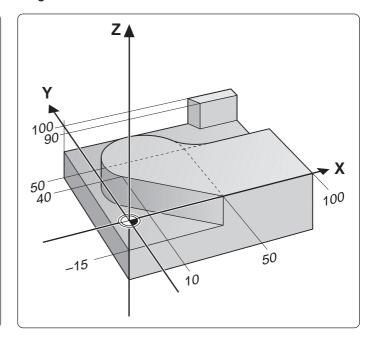
- Radius compensation
- Feed rate
- Miscellaneous function

Resulting NC block: G06 G42 G91 X+50 Y-10 *

Example for exercise: Circular arc connecting to a straight line

Coordinates of the transition point from the straight

line to the arc: X = 10 mmY = 40 mm


Coordinates of the

arc end point: X = 50 mm

Y = 50 mm

Milling depth: Z = -15 mm

Tool radius: R = 20 mm

Part program

%S525I G71 * N10 G30 G17 X+0 Y+0 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 *	Define the workplace blank
N30 G99 T12 L-25 R+20 *	Define the tool
N40 T12 G17 S1000 *	
N50 G00 G40 G90 Z+100 M06 *	Retract and insert tool
N60 X+30 Y-30 *	Pre-position in the working plane
N70 Z–15 M03 *	Move the tool to working depth
N80 G01 G41 X+50 Y+0 F100 *	Approach the contour with radius compensation at
	machining feed rate
	Straight line to which the arc tangentially connects
N100 G06 X+50 Y+50 *	Arc to end point $X = 50$ mm, $Y = 50$ mm; connects
	tangentially to the straight line in block N90
N110 G01 X+100 *	· · · · · · · · · · · · · · · · · · ·
N120 G00 G40 X+130 Y+70 *	
N130 Z+100 M02 *	Retract in the infeed axis
N99999 %S525I G71 *	

G25: Corner rounding

The tool moves in an arc that is tangentially connected to both the preceding and following contour elements.

G25 is used to round corners.

Input

- Radius of the arc
- Feed rate for the arc

Prerequisite

The rounding radius must be large enough to accommodate the tool.

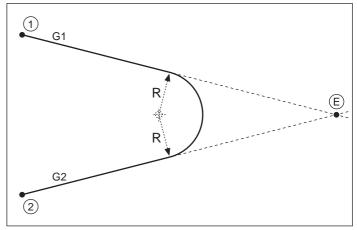
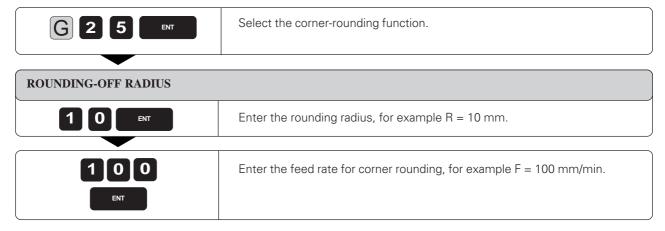
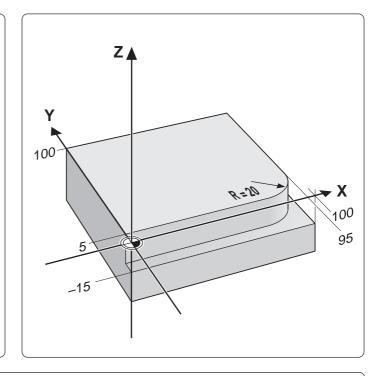



Fig. 5.35: Rounding radius R between G1 and G2

- In both the preceding and subsequent positioning blocks, both coordinates must lie in the plane of the arc.
- The corner point (E) is not part of the contour.
- A feed rate programmed in a G25 block is effective only in that block. After the G25 block, the previous feed rate becomes effective again.

To program a tangential arc between two contour elements:

Resulting NC block: G25 R 10 F 100


Example for exercise: Rounding a corner

Coordinates of the corner point: X = 95 mm Y = 5 mm

Rounding radius: R = 20 mm

Milling depth: Z = -15 mm

Tool radius: R = 10 mm

Part program

 %S527I G71 *
 Begin the program

 N10 G30 G17 X+0 Y+0 Z-20 *
 Define the workpiece blank

 N20 G31 G90 X+100 Y+100 Z+0 *
 Define the tool

 N30 G99 T7 L+0 R+10 *
 Define the tool

 N40 T7 G17 S1500 *
 Call the tool

 N50 G00 G40 G90 Z+100 M06 *
 Retract and insert tool

 N60 X-10 Y-5 *
 Pre-position in the working plane

 N70 Z-15 M03 *
 Move the tool to working depth

 N80 G01 G42 X+0 Y+5 F100 *
 Approach the contour with radius compensation at machining feed rate

 N90 X+95 *
 First straight line for the corner

 N100 G25 R20 *
 Insert a tangential arc with radius R = 20 mm between the contour elements

 N110 Y+100 *
 Second straight line for the corner

 N120 G00 G40 X+120 Y+120 *
 Depart the contour, cancel radius compensation

 N130 Z+100 M02 *
 Retract in the infeed axis

 N99999 % S527I G71 *

Polar coordinates are useful with:

- · Positions on circular arcs
- Workpiece drawing dimensions in degrees

Polar coordinates are explained in detail in the section "Fundamentals of NC" (page 1-12).

Polar coordinate origin: Pole I, J, K

The pole can be defined anywhere in the program before blocks containing polar coordinates. Similar to a circle center, the pole is defined in an I, J, K block using its coordinates in the Cartesian coordinate system. The pole remains in effect until a new pole is defined. The designation of the pole depends on the working plane:

Working plane	Pole
XY	I, J
YZ	J, K
ZX	K, J

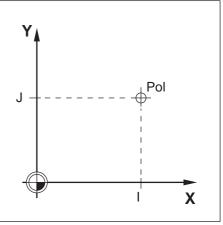


Fig. 5.36: The pole is the same as a circle center

G10: Straight line with rapid traverse

G11: Straight line with feed rate F ...

- Values from -360° to +360° are permissible for the angle H
- The sign of H depends on the angle reference axis:
 Angle from angle reference axis to R is counterclockwise: H>0

 Angle from angle reference axis to R is clockwise: H<0

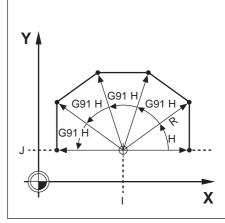
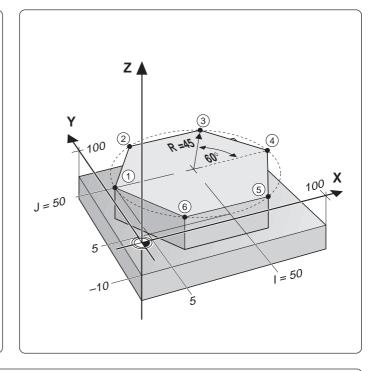


Fig. 5.37: Contour consisting of straight lines with polar coordinates

Resulting NC block: G10 R5 H30 *


Example for exercise: Milling a hexagon

Corner point coordinates:

① H = 180°	R = 45 mm
② H = 120°	R = 45 mm
3 H = 60°	R = 45 mm
④ H = 0°	R = 45 mm
⑤ H = 300°	R = 45 mm
$6 H = 240^{\circ}$	R = 45 mm

Milling depth: Z = -10 mm

Tool radius: R = 5 mm

Part program

%S530I G71 * N10 G30 G17 X+0 Y+0 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 * N30 G99 T1 L+0 R+17 *	
N50 G00 G40 G90 Z+100 M06 * N60 I+50 J+50 *	. Retract and insert tool
N70 G10 R+70 H–190 *	
N80 Z-10 M03 * N90 G11 G41 R+45 H+180 F100 *	. Move tool to working depth
N100 H+120 *	. Move to contour point 2
N110 H+60 * N120 G91 H–60 *	. Move to contour point 4, incremental dimensions
N130 G90 H-60 * N140 H+240 *	
N150 H+180 * N160 G10 G40 R+70 H+170 * N170 Z+100 M02 * N99999 %S530I G71 *	. Depart contour, cancel radius compensation

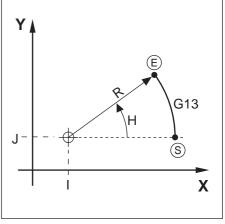
G12/G13/G15: Circular path around pole I, J, K

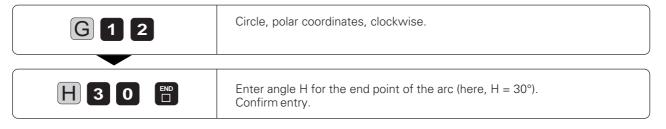
The polar coordinate radius is also the radius of the arc. It is defined by the distance from the starting point (§) to the pole.

Input

• Polar coordinate angle H for the end point of the arc

Permissible values for H: -5400° to +5400°




Fig. 5.38: Circular path around a pole

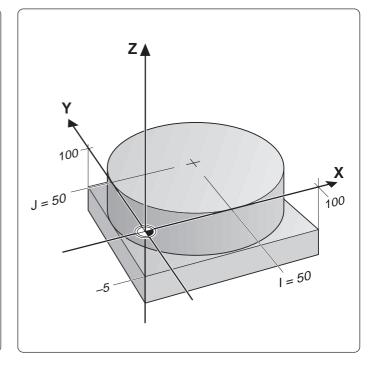
Defining the direction of rotation

Direction of rotation

ClockwiseCounterclockwiseNo definitionG15

(the last programmed direction of rotation is used)

Further entries, if necessary:


Radius compensation R Feed rate F Miscellaneous function M

Resulting NC block: G12 H30 *

Example for exercise: Milling a full circle

Circle center coordinates: X = 50 mm Y = 50 mm Radius: R = 50 mm Milling depth: Z = -5 mm

Tool radius: R = 15 mm

Part program

%S532I G71 *	Regin the program
N10 G30 G17 X+0 Y+0 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T25 L+0 R+15 *	Define the tool
N40 T25 G17 S1500 *	
N50 G00 G40 G90 Z+100 M06 *	
N60 I+50 J+50 *	
N70 G10 R+70 H+280 *	
	polar coordinates
N80 Z–5 M03 *	
	Approach the contour with radius compensation
	at machining feed rate
N100 G26 R10 *	Soft (tangential) approach
	Circle to end point H = 270°, negative direction
	of rotation
N120 G27 R10 *	Soft (tangential) departure
N130 G10 G40 R+70 H-110 *	Depart contour, cancel radius compensation
N140 Z+100 M02 *	
N99999 %S532I G71 *	

G16: Circular path with tangential transition

Moving on a circular path, the tool transitions tangentially to the previous contour element (1 to 2) at 2 .

Input:

- Polar coordinate angle H of the arc end point (E)
- Polar coordinate radius R of the arc end point (E)

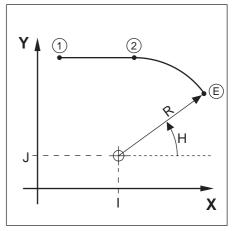
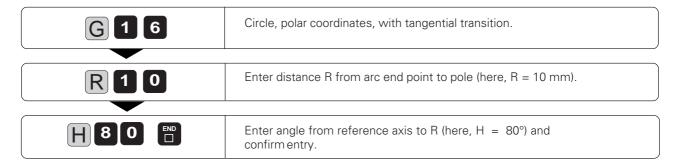



Fig. 5.39: Circular path around a pole with tangential transition

- The transition point must be exactly defined.
- The pole is not the center of the contour arc.

Further entries, if necessary:

Radius compensation R Feed rate F Miscellaneous function M

Resulting NC block: G16 R+10 H+80 *

Helical interpolation

A helix is a combination of circular motion in a main plane and linear motion in a plane perpendicular to the main plane.

Helices can only be programmed in polar coordinates.

Applications

You can use helical interpolation with form cutters to machine:

- · Large-diameter internal and external threads
- Lubrication grooves

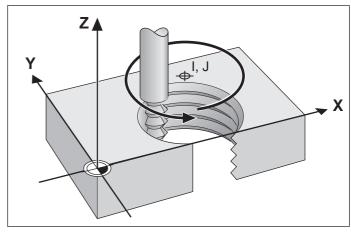


Fig. 5.40: A helix combines circular motion with linear motion

Input

- Total incremental angle of tool traverse on the helix
- Total height of the helix

Total incremental angle

Calculate the total incremental polar angle G91 H as follows:

$$H = n.360^{\circ},$$

where n is the number of revolutions of the helical path.

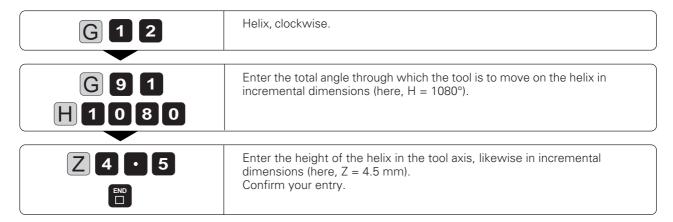
G91 H can be programmed with any value from -5400° to $+5400^{\circ}$ (i.e., up to n = 15).

Total height

Enter the height h of the helix referenced to the tool axis. The height is determined as follows:

$$h = n \cdot P$$
,

where n is the number of thread revolutions and P is the thread pitch.


Radius compensation

Enter the radius compensation for the helix according to the table at right.

Internal thread	Work direction	Rotation	Radius comp.
Right-handed	Z+	G13	G41
Left-handed	Z+	G12	G42
Right-handed	Z-	G12	G42
Left-handed	Z-	G13	G41
External thread	Work direction	Rotation	Radius comp.
External thread Right-handed	Work direction	Rotation G13	Radius comp.
			·
Right-handed	Z+	G13	

Fig. 5.41: The shape of the helix determines the direction of rotation and the radius compensation

To program a helix:

Further entries, if necessary:

Radius compensation Feed rate F Miscellaneous function M

Resulting NC block: G12 G91 H+1080 Z+4.5 *

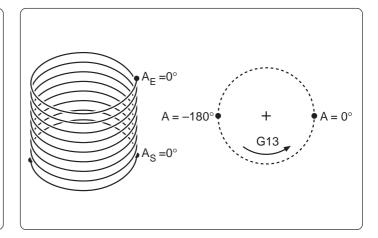
Example for exercise: Tapping

Given data

Thread:

Right-handed internal thread M64 x 1.5

Pitch P: 1.5 mm Starting angle A_s


 $360^{\circ} = 0^{\circ}$ at $Z_E = 0$ End angle A_□:

Thread revolutions n_s:

Thread overrun:

• at start of thread n_s: 0.5 • at end of thread n₌: 0.5

Number of cuts:

Calculating the input values

· Total height h: $h = P \cdot n$ $P = 1.5 \, mm$

 $n = n_R + n_S + n_E = 9$ $h = 13.5 \, \text{mm}$

 $H = n \cdot 360^{\circ}$ • Incremental polar coordinate angle H:

n = 9 (see total height h) $G91 H = 360^{\circ} \cdot 9 = 3240^{\circ}$

• Starting angle A_s with thread overrun n_s: $n_{s} = 0.5$

The starting angle of the helix is advanced by 180° (n = 1 corresponds to 360°). With positive rotation this means

 A_{S} with $n_{S} = A_{S}^{\circ} - 180^{\circ} = -180^{\circ}$

 $Z = P \cdot (n_R + n_S)$ Starting coordinate: $= -1.5 \cdot 8.5 \, \text{mm}$ = -12.75 mm

Z_s is negative because the thread is being cut in an upward direction towards $Z_F = 0$.

Part program

%S536I G71 * Begin the program N10 G30 G17 X+0 Y+0 Z-20 * Define the workpiece blank N20 G31 G90 X+100 Y+100 Z+0 * N30 G99 T11 L+0 R+5 * Define the tool N40 T11 G17 S2500 * Call the tool N50 G00 G40 G90 Z+100 M06 * Retract and insert tool N60 X+50 Y+30 * Pre-position in the working plane to the center of the hole N70 G29 * Transfer position as pole N110 G00 G40 G90 X+50 Y+30 * Depart contour (absolute), cancel radius compensation

Part program for cutting a thread with more than 15 revolutions (also see Chapter 6)

N80 G00 G40 G90 Z-12.75 M3 N90 G11 G41 R+32 H-180 F100 N100 G26 R+20 N110 G98 L1ldentify beginning of program section repeat N120 G13 G91 H+360 Z+1.5 F200 Enter thread pitch directly as an incremental Z dimension N130 L 1,24Program the number of repeats (thread revolutions) N140 G27 R+20

5.6 M Functions for Contouring Behavior and Coordinate Data

The following miscellaneous functions enable you to change the TNC's standard contouring behavior in certain situations:

- · Smoothing corners
- Inserting rounding arcs at non-tangential straight-line transitions
- Machining small contour steps
- Machining open contours
- Programming machine-referenced coordinates

Smoothing corners: M90

Standard behavior - without M90

The TNC stops the axes briefly at sharp transitions such as inside corners and contours without radius compensation.

Advantages:

- · Reduced wear on the machine
- High definition of corners (outside)

Note:

In program blocks with radius compensation (G41/G42), the TNC automatically inserts a transition arc at outside corners.

Smoothing corners with M90

At corners, the tool moves at constant speed. Advantages:

- · A smoother, more continuous surface
- · Reduced machining time

Example application:

Surface consisting of a series of straight line segments.

Duration of effect

Servo lag mode must be selected. M90 is only effective in the blocks in which it is programmed.

Independently of M90, you can use machine parameter MP7460 to set a limit value up to which the tool moves at constant path speed (effective with servo lag and feed precontrol). See page 11-14.

Fig. 5.42: Standard contouring behavior at G40 without M90

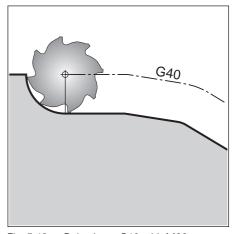


Fig. 5.43: Behavior at G40 with M90

Machining small contour steps: M97

Standard behavior - without M97

The TNC inserts a transition arc at outside corners. If the contour steps are very small, however, the tool would damage the contour. In such cases the TNC interrupts program run and generates the error message TOOL RADIUS TOO LARGE.

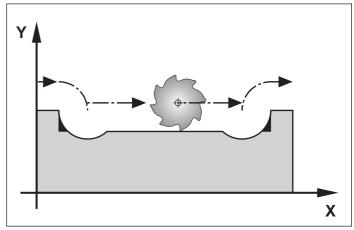


Fig. 5.44: Standard contouring behavior without M97 when the control would not generate an error message

Machining contour steps - with M97

The TNC calculates the contour intersection (§) (see figure) of the contour elements – as at inside corners – and moves the tool over this point. M97 is programmed in the same block as the outside corner point.

Duration of effect

M97 is effective only in the blocks in which it is programmed.

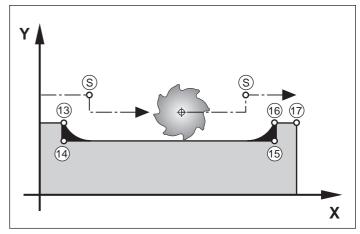


Fig. 5.45: Contouring behavior with M97

A corner machined with M97 will not be completely finished. It may have to be reworked with a smaller tool.

Program structure

The outside corners are programmed in blocks N20 and N50. These are the blocks in which you program M97.

Machining open contours: M98

Standard behavior - without M98

The TNC calculates the intersections (§) of the cutter paths and moves the tool in the new direction at those points. If the contour is open at the corners, however, this will result in incomplete machining.



Fig. 5.46: Tool path without M98

Machining open corners with M98

With M98, the TNC temporarily suspends radius compensation to ensure that both corners are completely machined.

Duration of effect

M98 is effective only in the blocks in which it is programmed.

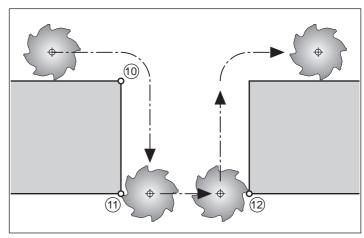


Fig. 5.47: Tool path with M98

Program structure

Programming machine-referenced coordinates: M91/M92

Standard setting

Coordinates are referenced to the workpiece datum (see page 1-13).

Scale reference point

The position feedback scales are provided with one or more reference marks. Reference marks define the position of the scale reference point. If the scale has only one reference mark, its position is the scale reference point. If the scale has several – distance-coded – reference marks, then the scale reference point is the position of the leftmost reference mark (at the beginning of the measuring range).

Machine datum - miscellaneous function M91

The machine datum is required for the following tasks:

- Defining the limits of traverse (software limit switches)
- Moving to machine-referenced positions (such as tool change positions)
- Setting the workpiece datum

The distance for each axis from the scale reference point to the machine datum is defined by the machine manufacturer in a machine parameter.

If you want the coordinates in a positioning block to be referenced to the machine datum, end the block with M91.

Coordinates that are referenced to the machine datum are indicated in the display with REF.

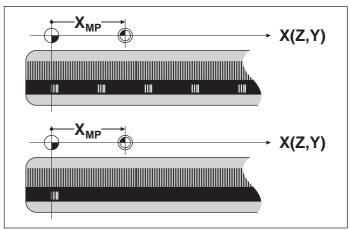


Fig. 5.48: Scale reference point \Leftrightarrow and machine datum \Leftrightarrow on scales with one or more reference marks.

Additional machine datum - miscellaneous function M92

In addition to the machine datum, the machine manufacturer can also define an additional machine-based position as a reference point.

For each axis, the machine manufacturer defines the distance between the machine datum and this additional machine datum.

If you want the coordinates in a positioning block to be based on the additional machine datum, end the block with M92.

Radius compensation remains the same in blocks that are programmed with M91 or M92.

Workpiece datum

The user enters the coordinates of the datum for workpiece machining in the MANUAL OPERATION mode (see page 2-7).

If you want the coordinates to always be referenced to the machine datum or to the additional machine datum, you can inhibit datum setting for one or more axes.

If datum setting is inhibited for all axes, the TNC no longer displays the DATUM SET soft key in the MANUAL OPERATION mode.

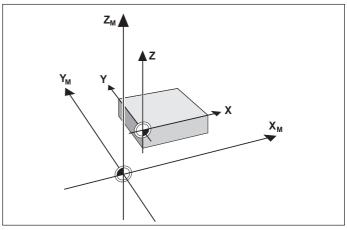


Fig. 5.49: Machine datum 🌘 and workpiece datum 🕀

Feed rate factor for plunging movements: M103 F...

Standard behavior - without M103 F...

The TNC moves the tool at the last programmed feed rate, regardless of the direction of traverse.

Reducing the feed rate during plunging - with M103 F...

The TNC reduces the feed rate for movement in the negative direction of the tool axis to a given percentage of the last programmed feed rate:

 $F_{7MAX} = F_{PROG} * F_{\%}$

Maximum feed rate in negative tool axis direction F_{ZMAX}:

F_{PROG} : F_% : Last programmed feed rate

Programmed factor behind M103, in %

Cancelling

M103 F... is canceled by entering M103 without a factor.

Feed rate for plunging is to be 20% of the feed rate in the plane

· ·	Actual contouring feed rate [mm/min] with override 100%	
G01 G41 X+20 Y+20 F500 M103 F20	500	
Y+50	500	
G91 Z-2.5	100	
Y+5 Z-5	367	
X+50	500	
G90 Z+5	500	

M103 F... is activated with machine parameter 7440 (see page 11-13).

Feed rate at circular arcs: M109/M110/M111

Standard behavior - M111

The programmed feed rate refers to the center of the tool path.

Constant contouring speed at circular arcs (feed rate increase and decrease) - M109

The TNC reduces the feed rate for circular arcs at inside contours such that the feed rate at the tool cutting edge remains constant. At outside contours the feed rate for circular arcs is correspondingly increased.

Constant contouring speed at circular arcs (feed rate decrease only) - M110

The TNC reduces the feed rate for circular arcs only at inside contours. At outside contours the feed rate remains the same.

Insert rounding arc between straight lines: M112 E...

Standard behavior - without M112 E...

A contour consisting of many short straight lines is normally machined such that the corners are cut as exactly as possible. When executing programs without tool radius compensation, the feed rate is therefore decreased to zero at corners.

Insert rounding arc between straight lines - with M112 E...

The TNC inserts a rounding arc between **two uncompensated straight lines**. The size of the arc depends on:

- the permissible deviation from the programmed contour entered for E (if no deviation is entered, the TNC assumes the permissible deviation to be infinite)
- the lengths of the two straight line segments between which the rounding arc is to be inserted
- the programmed feed rate (override setting 150%) and the circular acceleration (defined by the machine tool builder through machine parameters).

From these three criteria, the TNC calculates three rounding arcs and inserts the arc with the largest radius. If necessary, the contouring feed rate will automatically be reduced to comply with the programmed tolerance.

The permissible deviation E should be less than the programmed distance between points.

Parameter programming

You can also define E through Q parameters.

Duration of effect

M112 E... is effective during operation with feed precontrol as well as with servo lag. To cancel M112 E..., enter M113.

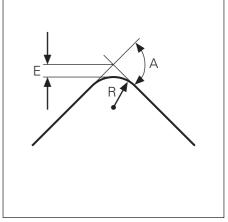


Fig. 5.50: Permissible deviation E from the programmed contour

Automatic compensation of machine geometry when working with tilted axes: M114

Standard behavior - without M114

The TNC moves the tool to the positions given in the part program. The tool offset resulting from a tilted axis and the machine geometry must be calculated by a postprocessor.

Automatic compensation of machine geometry – with M114

The TNC compensates the tool offset resulting from positioning with tilted axes (such as dx and dz in Fig. 5.51). It calculates a 3D length compensation. The radius compensation must be calculated by a CAD system or by a postprocessor. A programmed radius compensation (RL or RR) results in the error message ILLEGAL NC BLOCK.

Thus if you write the NC program with a postprocessor, the machine geometry does not have to be calculated.

If the tool length compensation is calculated by the TNC, the programmed feed rate refers to the point of the tool; otherwise, it refers to the tool datum.

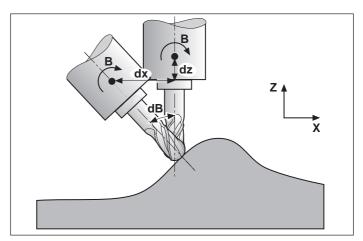


Fig. 5.51: Offset of the tool datum for tilting the tool

If you are working with a swivel head under program control, you can interrupt program run and change the position of the tilt axis (for example, with the electronic handwheel.) Use the RESTORE POS AT N function (block scan, see page 3-8) to return to the point of interruption. The TNC automatically calculates the new tilt axis position.

Cancelling

M114 is cancelled by M115 or by a N99999 block.

The machine geometry must be defined by the machine manufacturer in machine parameters MP7510 and following.

Feed rate in mm/min on rotary axes A, B, C: M116

Standard behavior - without M116

The TNC interprets the programmed feed rate in a rotary axis in degrees per minute. The contouring feed rate therefore depends on the distance from the tool center to the center of the rotary axis. The larger this distance becomes, the greater the contouring feed rate.

Feed rate in mm/min on rotary axes - with M116

The TNC interprets the programmed feed rate in a rotary axis in mm/min. The contouring feed rate is therefore independent of the distance from the tool center to the center of the rotary axis.

Duration of effect

M116 is effective until the program ends (N99999 block), whereupon it is automatically cancelled.

The machine geometry must be entered in machine parameters 7510 ff. by the machine manufacturer.

Reduce display of a rotary axis to a value less than 360°: M94

Standard behavior - without M94

The TNC moves the tool from the current angular value to the programmed angular value.

Example: Current angular value: 538°

Programmed angular value: 180° Actual path of traverse: –358°

Reduce display of rotary axis to value less than 360° - with M94

At the beginning of the block, the TNC first reduces the current angular value to a value less than 360° and then moves the tool to the programmed value. If several rotary axes are active, M94 will reduce the display of all rotary axes. To have the TNC reduce the display for a specific rotary axis only, enter the axis after M94.

Example: M94 Reduce display of all active rotary

axes

M94 C Reduce display of the C axis only

G00 C+180 M94 First reduce display of all active

rotary axes, then move the tool in the C axis to the programmed

value.

Current angular value: 538° Programmed angular value: 180° Actual path of traverse: +2°

Duration of effect

M94 is effective only at the beginning of the block in which it is programmed.

Optimized traverse of rotary axes: M126

Standard behavior - without M126

If you reduce display of a rotary axis to a value less than 360°, the TNC will move the axis in the following way:

Actual position	Nominal position	Actual path of traverse
350°	10°	-340°
10°	340°	+330°

Optimized traverse of rotary axes - with M126

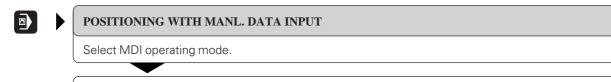
If you reduce display of a rotary axis to a value less than 360°, the TNC will move the axis in the following way:

Actual position	Nominal position	Actual path of traverse
350°	10°	+20°
10°	340°	-30°

Resulting NC block: L C+10 A+340 R0 F500 M126

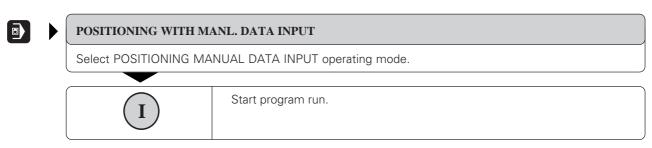
Duration of effect

 $\,$ M126 is effective at the beginning of the block. M126 is cancelled by M127 or at the end of program.


5.7 Positioning with Manual Data Input: System File \$MDI

In the positioning with MDI mode you can program the system file \$MDI.I (or \$MDI.H) for immediate execution. \$MDI is programmed like any other part program.

Applications


- Pre-positioning
- Face milling

To program the system file \$MDI:

Program \$MDI as desired.

To execute the system file \$MDI:

The system file \$MDI must not contain a program call block (% block or cycle call).

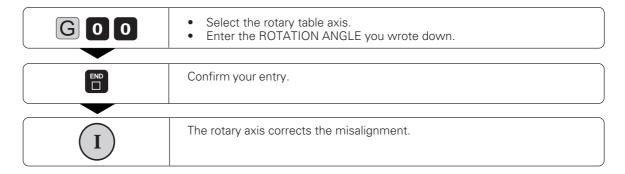
5.7 Positioning with Manual Data Input: System File \$MDI

Example application

Correcting workpiece misalignment on machines with rotary tables.

Make a basic rotation with the 3D touch probe, write down the ROTATION ANGLE, then cancel the basic rotation again.

• Change the operating mode



POSITIONING WITH MANL. DATA INPUT

Open the system file \$MDI.

• Program the rotation

6 Subprograms and Program Section Repeats

Subprograms and program section repeats enable you to program a machining sequence once and then run it as often as desired.

Labels

Subprograms and program section repeats are marked by labels.

A label is identified by a number between 0 and 254. Each label (except label 0) can be set only once in a program. Labels are set with G98.

LABEL 0 marks the end of a subprogram.

6.1 Subprograms

Operating sequence

The main program is executed up to the block in which a subprogram is called with Ln,0 (1).

The subprogram is then executed from beginning to end (G98 L0) (②).

The main program is then resumed from the block after the subprogram call (③).

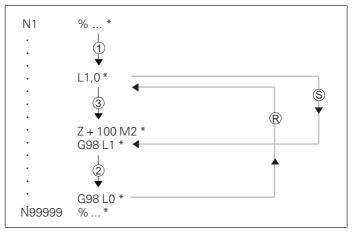
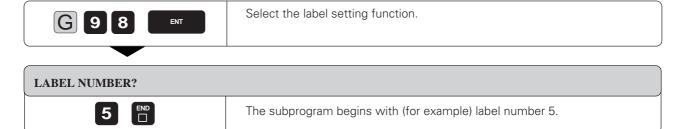


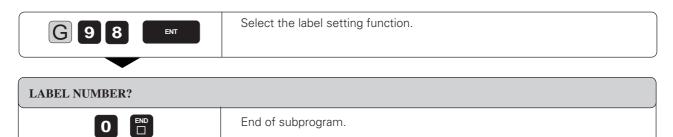
Fig. 6.1: Flow diagram for subprogramming \$\mathbb{S}\$ = jump \mathbb{R}\$ = return jump


Operating limitations

- A main program can contain up to 254 subprograms.
- Subprograms can be called in any sequence and as often as desired.
- A subprogram cannot call itself.
- Subprograms should be written at the end of the main program (behind the block with M02 or M30).
- If subprograms are located before the block with M02 or M30, they will be executed at least once even if they are not called.

6.1 Subprograms

Programming and calling subprograms


Mark the beginning:

Resulting NC block: G98 L5 *

Mark the end:

A subprogram always ends with label number 0.

Resulting NC block: G98 L0 *

Call the subprogram:

A subprogram is called by its label number.

Resulting NC block: L5,0 *

The command L0,0 is not permitted (label 0 is only used to mark the end of a subprogram).

6.1 Subprograms

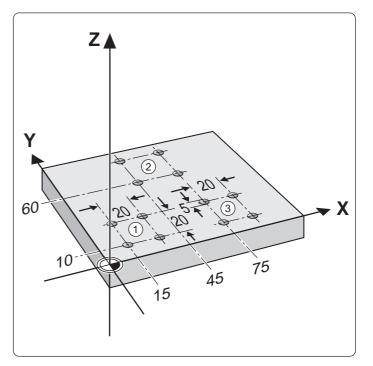
Example for exercise: Group of four holes at three different locations

The holes are drilled with cycle G83 PECKING. Enter the setup clearance, feed rate, etc. in the cycle once. You can then call the cycle with miscellaneous function M99 (see page 8-3).

Coordinates of the first hole in each group:

Group ① X = 15 mm Y = 10 mm

Group ② X = 45 mm Y = 60 mm


Group (3) X = 75 mm Y = 10 mm

Hole spacing: X = 20 mm

Y = 20 mm

Total hole depth: Z = 10 mm

Hole diameter: $\emptyset = 5 \text{ mm}$

rogram
blank form
the tool
e tool
definition PECKING (see page 8-5)
t and insert tool
to group 1
sition in the infeed axis
bprogram (subprogram executed with block N90)
to group 2
bprogram
to group 3
bprogram
t in the infeed axis;
main program (M02); the subprogram is entered
IM02
ning of subprogram
m pecking cycle for first hole
to second hole (incremental) and drill
to third hole (incremental) and drill
to fourth hole (incremental) and drill; change to
te coordinates (G90)
subprogram program
r

6.2 Program Section Repeats

Like subprograms, program section repeats are identified with labels.

Operating sequence

The program is executed up to the end of the labelled program section (1 and 2), i.e. up to the block with Ln,m.

Then the program section between the called label and the label call is repeated the number of times entered after under m (③), ④).

The program is then resumed after the last repetition (⑤).

Programming notes

- A program section can be repeated up to 65 534 times in succession.
- The total number of times the program section is executed is always one more than the programmed number of repeats.

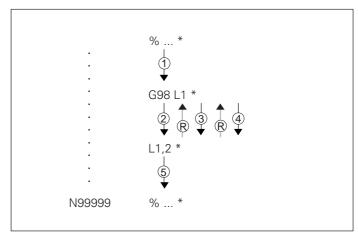
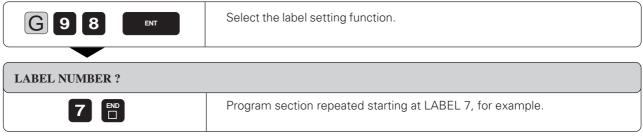



Fig. 6.2: Flow diagram for a program section repeat; \Re = return jump

Programming and executing a program section repeat

Mark the beginning:

Resulting NC block: G98 L7 *

Specify the number of repeats:

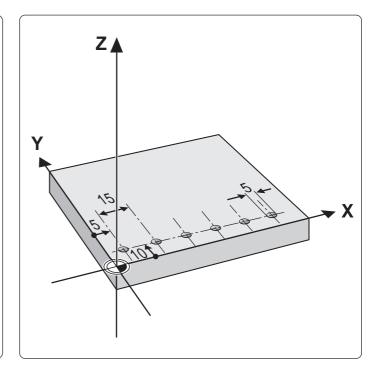
Enter the number of repeats in the block that calls the label. This is also the block that ends the program section.

The program section from LABEL 7 up to this block will be repeated ten times. This means it will be run a total of *eleven times*.

Resulting NC block: L7,10 *

6.2 Program Section Repeats

Example for exercise: Row of holes parallel to the X axis

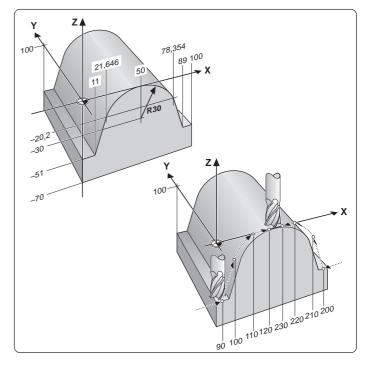

Coordinates of the first hole: 5 mm 10 mm

Hole spacing: $IX = 15 \, \text{mm}$

Number of holes: 6

Depth: 10

Hole diameter: 5 mm


Part program

%S66I G71 *	Start program
N10 G30 G17 X+0 Y+0 Z-20 *	Define blank form
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+2.5 *	Define tool
N40 T1 G17 S3500 *	Call tool
N50 G00 G40 G90 Z+100 M06 *	Retract and insert tool
N60 X-10 Y+10 Z+2 M03 *	Pre-position to the point which is offset in negative X
	direction by the hole spacing
N70 G98 L1 *	
N80 G91 X+15 *	Move to drilling position (incremental dimension)
N90 G01 G90 Z-10 F100 *	Drill (absolute dimension)
N100 G00 Z+2 *	Retract
N110 L1,5 *	Call LABEL 1; repeat program section from block N70 to
	block N110 five times (total of six holes)
N120 Z+100 M02 *	Retract in the infeed axis
N99999 %S66l G71 *	

Example for exercise: Milling without radius compensation using program section repeats

Sequence:

- Upward milling direction
- Machine the area from X=0 to 50 mm (program all X coordinates with the tool radius subtracted) and from Y=0 to 100 mm: G98 L1
- Machine the area from X=50 to X=100 mm (program all X coordinates with the tool radius added) and from Y=0 to 100 mm: G98 L2
- After each upward pass, the tool is moved by an increment of +2.5 mm in the Y axis.

The illustration at right shows the block numbers containing the end points of the corresponding contour elements.

Part program	
%S67I G71 *	Start program
N10 G30 G17 X+0 Y+0 Z-70 *	Define blank form (note new values)
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+10 *	
N40 T1 G17 S1750 *	
N50 G00 G40 G90 Z+100 M06 *	
N60 X-20 Y-1 M03 *	Pre-position in the plane
N70 G98 L1 *	Start of program section 1
N80 G90 Z-51 *	
N90 G01 X+1 F100 *	
N100 X+11.646 Z-20.2 *	
N110 G06 X+40 Z+0 *	$X = 0$ to 50 mm and $Y = 0$ to 100 mm
N120 G01 X+41 *	
N130 G00 Z+10 *	
N140 X-20 G91 Y+2.5 *	O HI ADEL 4
N150 L1,40 *	Call LABEL 1, repeat program section from block
N1100 C00 7 : 20 *	N70 to N150 forty times
N160 G90 Z+20 *	
N170 X+120 Y-1 *	Ctart of program section 2
N180 G98 L2 * N190 G90 Z–51 *	Start of program section 2
N200 G01 X+99 F100 *	
N210 X+88.354 Z-20.2 *	Program coation for machining from
N220 G06 X+60 Z+0 *	
N230 G01 X+59 *	X = 50 to 100 mm and 1 = 0 to 100 mm
N240 G00 Z+10 *	
N250 X+120 G91 Y+2.5 *	
	Call LABEL 2, repeat program section from block
14200 L2,70	N180 to N260 forty times
N270 G90 Z+100 M02 *	Retract in the infeed axis
N99999 %S67I G71 *	The state of the s
(

6.3 Program as Subprogram

Operating sequence

A program is executed (①) up to the block in which another program is called (block with %).

Then the other program is run from beginning to end (2).

The first program is then resumed beginning with the block behind the program call (3).

Operating limitations

- Programs called from an external data medium (e.g., floppy disk) must not contain any subprograms or program section repeats.
- No labels are needed to call main programs as subprograms.
- The called program must not contain the miscellaneous functions M02 or M30.
- The called program must not contain a jump into the calling program.

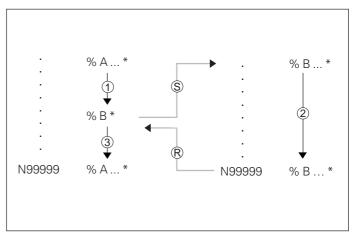
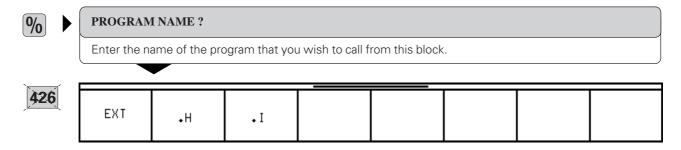



Fig. 6.3: Flow diagram of a program as subprogram. (S) = Jump, (R) = return Jump

Calling a program as a subprogram

Function	Soft key
Call a plain-language program	•H
Call an ISO program	• I
Call an externally stored program	ЕХТ

Resulting NC block: % NAME

- You can also call a program with cycle G39 (see page 8-53).
- When calling an ISO program, the program name must not contain G50, G70 or G71.

The following additional notes apply to the TNC 426:

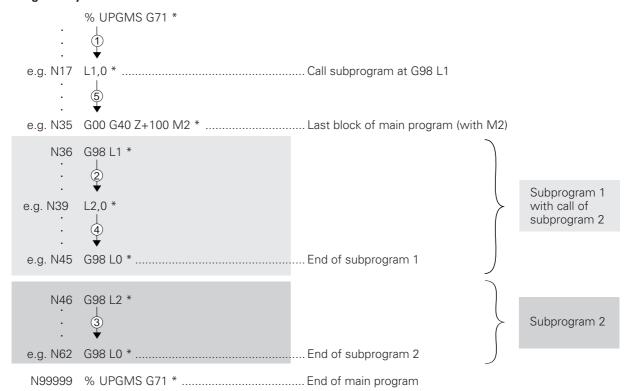
- If the program you want to call is located in the same directory as the program you are calling it from, you only have to enter the program name.
- If the program you want to call is not located in the same directory as the program you are calling it from, then you must enter the full path (e.g., \VZW35\ROUGH\PGM1.I).
- If you want to call a plain-language program, enter the file type .H behind the program name.

6.4 Nesting

Subprograms and program section repeats can be nested in the following ways:

- Subprograms within a subprogram
- Program section repeats within a program section repeat
- Subprograms repeated
- · Program section repeats within a subprogram

Nesting depth


The nesting depth is the number of successive levels in which program sections or subprograms can call further program sections or subprograms.

Maximum nesting depth for subprograms: 8

Maximum nesting depth for calling main programs: 4

Subprogram within a subprogram

Program layout

Program execution

1st step: The main program UPGMS is executed up to block 17.
2nd step: Subprogram 1 is called, and executed up to block 39.
3rd step: Subprogram 2 is called, and executed up to block 62.
End of subprogram 2 and return jump to the subprogram from which it was called.
4th step: Subprogram 1 is called, and executed from block 40 to block 45.
End of subprogram 1 and return jump to the main program UPGMS.
5th step: Main program UPGMS is executed from block 18 to block 35.
Return jump to block 1 and end of program.

Example for exercise: Three groups of four holes (see page 6-4) with three different tools

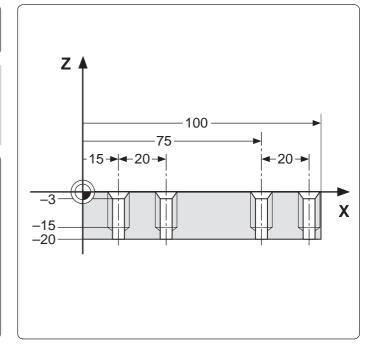
Machining sequence:

Countersinking - Drilling - Tapping

Machining data is entered in cycle G83: PECK DRILLING (see page 8-4) and cycle G84: TAPPING (see page 8-6). The tool moves to the hole groups in a subprogram, while the machining is performed in a second subprogram.

Coordinates of the first hole in each group:

(1) X = 15 mm Y = 10 mm

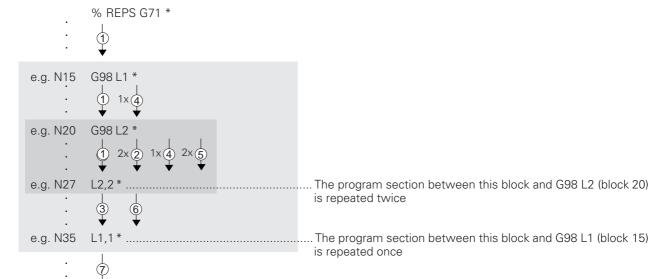

(2) X = 45 mm Y = 60 mm

3 X = 75 mm Y = 10 mm

Hole spacing: IX = 20 mm IY = 20 mm

Hole data:

Countersinking ZC = 3 mm $\emptyset = 7 \text{ mm}$ Drilling ZD = 15 mm $\emptyset = 5 \text{ mm}$ Tapping ZT = 10 mm $\emptyset = 6 \text{ mm}$



Part program	
%S610I G71 *	Start program
N10 G30 G17 X+0 Y+0 Z-20 *	Define bank form
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T25 L+0 R+2.5 *	Tool definition for pecking
N40 G99 T30 L+0 R+3 *	Tool definition for countersinking
N50 G99 T35 L+0 R+3.5 *	
N60 T35 G17 S3000 *	Tool call for countersinking
N70 G83 P01 –2 P02 –3 P03 –3 P04 0	
P05 100 *	
N80 L1,0 *	
N90 T25 G17 S2500 *	Tool call for pecking
N100 G83 P01 –2 P02 –25 P03 –10 P04 0	Cycle definition neeting
P05 150 * N110 L1,0 *	
N120 T30 G17 S100 *	
N130 G84 P01 –2 P02 –15 P03 0.1 P04 100 *	
N140 L1,0 *	Call subprogram 1
N150 7+100 M02 *	Retract in the infeed axis; end of main program
N160 G98 L1 *	
N170 G00 G40 G90 X+15 Y+10 M03 *	
N180 Z+2 *	Pre-position in the infeed axis
N190 L2,0 *	Call subprogram 2
N200 X+45 Y+60 *	
N210 L2,0 *	Call subprogram 2
N220 X+75 Y+10 *	
N230 L2,0 *	
N240 G98 L0 *	End of subprogram 1
N250 G98 L2 *	Start of subprogram 2
N260 G79 *	
N270 G91 X+20 M99 *	Drill holes with currently active cycle
N280 Y+20 M99 *	
N290 X-20 G90 M99 *	
N300 G98 L0 *	End of subprogram 2
N99999 %S610I G71 *	

6.4 Nesting

Repeating program section repeats

Program layout

Program execution

N99999

1st step: Main program REPS is executed up to block 27.

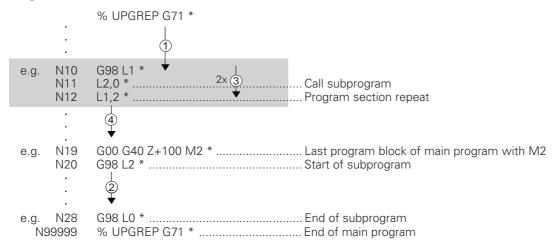
% REPS G71 *

2nd step: Program section between block 27 and block 20 is repeated twice.

3rd step: Main program REPS is executed from block 28 to block 35.

4th step: Program section between block 35 and block 15 is repeated once.

5th step: Repetition of the second step within step 4.


6th step: Repetition of the third step within step 4.

7th step: Main program REPS is executed from block 36 to block 50. End of program.

6.4 Nesting

Repeating subprograms

Program structure

Program execution

1st step: Main program UPGREP is executed up to block 11.

2nd step: Subprogram 2 is called and executed.

3rd step: Program section from block 12 to block 10 is repeated twice,

so subprogram 2 is repeated twice.

4th step: Main program UPGREP is executed from block 13 to block 19. End of program.

7 Programming with Q Parameters

Q Parameters are used for:

- Programming families of parts
- Defining contours through mathematical functions

An entire **family of parts** can be programmed on the TNC with **a single part program**. You do this by entering variables called *Q parameters* instead of fixed numerical values.

 $\ensuremath{\text{Q}}$ parameters are designated by the letter $\ensuremath{\text{Q}}$ and a number between 0 and 299.

Meaning	Range				
Freely applicable parameters, locally effective (depending on MP7251)	Q0 to Q99				
Parameters for special functions of the TNC	Q100 to Q199				
Additional parameters, only available on TNC 426: Parameters that are primarily used for cycles,					
globally effective	Q200 to Q299				

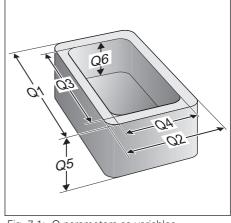


Fig. 7.1: Q parameters as variables

Q parameters can represent information such as:

- · coordinate values
- feed rates
- rpm
- cycle data

Q parameters also enable you to program **contours** that are defined through **mathematical functions**.

In addition, you can use Ω parameters to make the execution of machining steps depend on certain **logical conditions**.

You can $\mbox{\bf mix}~\mbox{\bf Q}$ parameters and fixed numerical values within a program.

Q parameters can be assigned numerical values between -99999.9999 and +99999.9999.

You can enter the individual Q parameter functions either blockwise (see pages 7-3 to 7-12) or together in a formula through the ASCII keyboard (see pages 7-20 to 7-22).

Certain Q parameters are always assigned the same data by the TNC. For example, Q108 is always assigned the current tool radius. A list of these parameters can be found in Chapter 11.

Use the Q key (below the -/+ key) to select the Q parameter functions. The following soft keys appear, with which you can select function groups:

BASIC ARITH- METIC	TRIGO- NOMETRY	JUMP	DIVERSE FUNCTION	FORMULA		END

Function	Soft key
Basic arithmetic (assign, add, subtract, multiply, divide, square root)	BASIC ARITH- METIC
Trigonometric functions	TRIGO- NOMETRY
If/Then conditions, jumps	JUMP
Other functions	DIVERSE FUNCTION
Enter formula directly from keyboard	FORMULA

7.1 Part Families — Q Parameters in Place of Numerical Values

The Q parameter function D0: ASSIGN assigns numerical values to

Q parameters. Example: Q10 = 25

This enables you to use variables in the program instead of fixed

numerical values.

Example: X + Q10 (= X + 25)

You only need to write one program for a whole family of parts, entering the characteristic dimensions as Q parameters. To program a particular part, you then assign the appropriate values to the individual Q parameters.

Example

Cylinder with Q parameters

Radius $R = \Omega 1$ Height $H = \Omega 2$ Cylinder Z1: $\Omega 1 = +30$ $\Omega 2 = +10$

Cylinder Z2: Q1 = +10

Q2 = +50

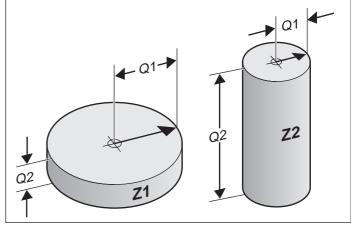
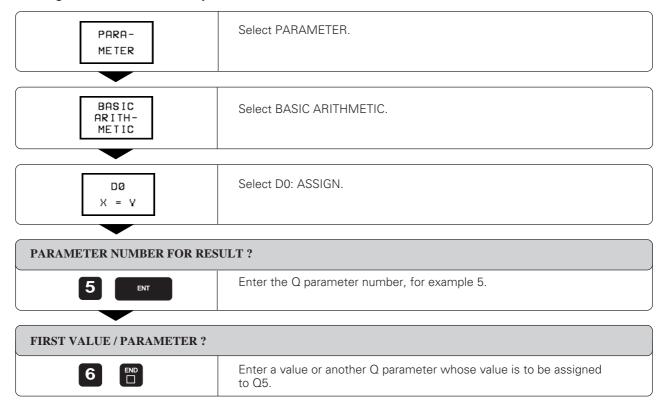



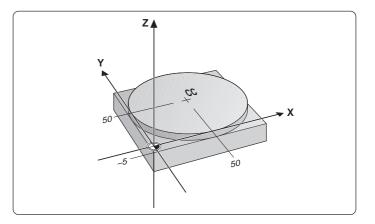
Fig. 7.2: Part dimensions as Q parameters

To assign numerical values to Q parameters:

Resulting NC block: D00 Q5 P01 +6*

Example for exercise: Full circle

Circle center I, J: X = 50 mmY = 50 mm


Beginning and end

of circular arc C: X = 50 mm

Y = 0 mm

Milling depth: $Z_{M} = -5 \text{ mm}$

Tool radius: R = 15 mm

Part program without Q parameters %S520I G71 * Start of program N10 G30 G17 X+1 Y+1 Z–20 * Blank form MIN point N40 T6 G17 S1500 * Call tool N50 G00 G40 G90 Z+100 M06 * Retract and insert tool N60 X+50 Y-40 * Pre-position in the working plane N70 Z5 M03 * Move tool to working depth machining feed rate N100 G26 R10 * Soft (tangential) approach N110 G02 X+50 Y+0 * Mill arc around circle center I, J; negative rotation; coordinates of end point X = +50 mm and Y = +0N120 G27 R10 * Soft (tangential) departure N130 G00 G40 X+50 Y-40 * Depart contour, cancel radius compensation

Continued on next page...

Q Parameters in Place of Numerical Values

```
Part program with Q parameters
 %S74I G71 * ..... Start of program

        N10 D00 Q1 P01 +100 *
        Clearance height

        N20 D00 Q2 P01 +30 *
        Start position X

        N30 D00 Q3 P01 -20 *
        Start/end position Y

        N40 D00 Q4 P01 +70 *
        End position X

        N50 D00 Q5 P01 -5 *
        Milling depth

N50 D00 Q5 P01 –5 * Milling depth
N60 D00 Q6 P01 +50 * Circle center X
N70 D00 Q7 P01 +50 * Circle center Y
N80 D00 Q8 P01 +50 * Circle starting point X
N90 D00 Q9 P01 +0 * Circle starting point Y
N100 D00 Q10 P01 +0 * Tool length L
N110 D00 Q11 P01 +15 * Tool radius R
N120 D00 Q20 P01 +100 * Milling feed rate F
N130 G30 G17 X+1 Y+1 Z-20 *
N140 G31 G90 X+100 Y+100 Z+0 *
 N140 G31 G90 X+100 Y+100 Z+0 *
 N150 G99 T6 L+Q10 R+Q11 *
 N160 T6 G17 S1000 *
 N170 G00 G40 G90 Z+Q1 M06 *
 N180 X+Q2 Y+Q3 *
 N190 Z+Q5 M03 * ...... Block N130 to N260 correspondingly
 N210 G01 G41 X+Q8 Y+Q9 FQ20 *
 N220 G26 R10 *
 N230 G02 X+Q8 Y+Q9 *
 N240 G27 R10 *
 N250 G00 G40 X+Q4 Y+Q3 *
 N260 Z+Q1 M02 *
 N99999 %S74I G71 *
```

7.2 Describing Contours Through Mathematical Functions

Select the BASIC ARITHMETIC soft key to call the following functions:

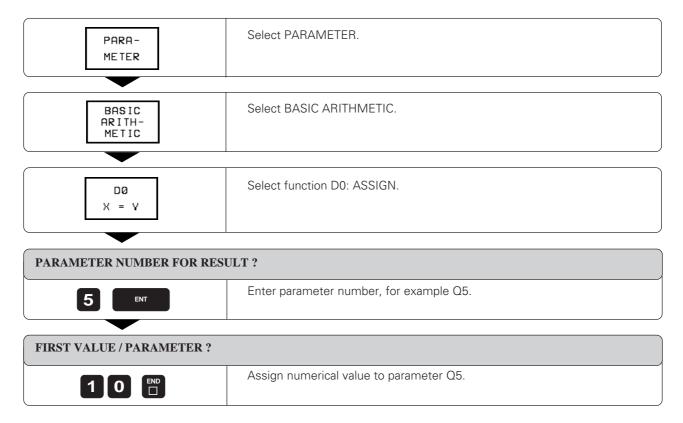
DØ	D1	D2	D3	D4	D5	FND
X = Y	X + Y	X - Y	X * Y	X / Y	SQRT	END

Overview

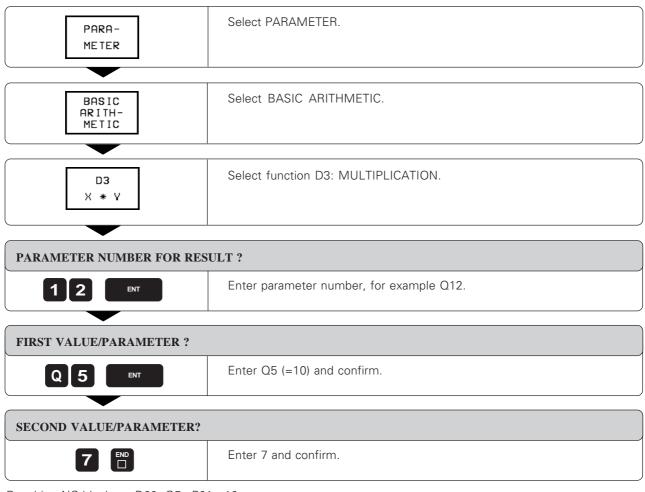
The mathematical functions assign the result of one of the following operations to a $\ensuremath{\Omega}$ parameter:

	Soft key
D0: ASSIGN Example: D00 Q5 P01 +60* Assigns a numerical value.	D0 X = Y
D1: ADDITION Example: D01 Q1 P01 -Q2 P02 -5* Calculates and assigns the sum of two values.	D1 X + Y
D2: SUBTRACTION Example: D02 Q1 P01 +10 P02 +5* Calculates and assigns the difference of two values.	D2 X - Y
D3: MULTIPLICATION Example: D03 Q2 P01 +3 P02 +3* Calculates and assigns the product of two values.	D3
D4: DIVISION Example: D04 Q4 P01 +8 P02 +Q2* Calculates and assigns the quotient of two values. Not permitted: division by 0	D4 X / Y
D5: SQUARE ROOT Example: D05 Q20 P01 +4* Calculates and assigns the square root of a number. Not permitted: square root of a negative number	D5 SQRT

In the above table, "values" can be any of the following:


- two numbers
- two Q parameters
- a number and a Q parameter

The $\ensuremath{\mathrm{Q}}$ parameters and numerical values in the equations can be entered with positive or negative signs.


Describing Contours Through Mathematical Functions

Programming example for basic arithmetical operations

Assign the value 10 to parameter Q5, and assign the product of Q5 and the value 7 to Q12.

7.2 Describing Contours Through Mathematical Functions

Resulting NC blocks: D00 Q5 P01 +10

D03 Q12 P01 +Q5 D02 +7

7.3 Trigonometric Functions

 $\it Sine, cosine \ {\it and tangent} \ {\it are terms designating the ratios of the sides of right triangles}.$

For a right triangle, the trigonometric functions of the angle $\boldsymbol{\alpha}$ are defined by the equations

$$\sin \alpha = a/c,$$

$$\cos \alpha = b/c,$$

$$\tan \alpha = a/b = \sin \alpha/\cos \alpha,$$

where

- c is the side opposite the right angle
- a is the side opposite angle α
- b the third side.

The angle can be found from the tangent:

$$\alpha = \arctan \alpha = \arctan (a/b) = \arctan (\sin \alpha / \cos \alpha)$$

Example: a = 10 mm

b = 10 mm

 α = arc tan (a/b) = arc tan 1 = 45°

Furthermore, $a^2 + b^2 = c^2$ $(a^2 = a \cdot a)$

 $c = \sqrt{a^2 + b^2}$

Select the trigonometric functions to call the following options:

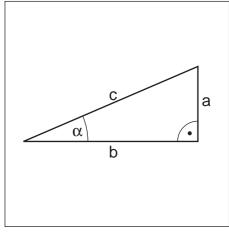


Fig. 7.3: Sides and angles on a right triangle

D6	07	D8	D13		FNI
SIN(X)	cos(X)	X LEN Y	X ANG Y		LENT

Overview

	Soft key
D6: SINE Example: D06 Q20 P01 –Q5 * Calculate the sine of an angle in degrees (°) and assign it to a parameter	D6 SIN(X)
D7: COSINE Example: D07 Q21 P01 -Q5 * Calculate the cosine of an angle in degrees (°) and assign it to a parameter	D7 COS(X)
D8: ROOT-SUM OF SQUARES Example: D08 Q10 P01 +5 P02 +4 * Take the square root of the sum of two squared numbers and assign it to a parameter	D8 X LEN Y
D13: ANGLE Example: D13 Q20 P01 +10 P02 -Q1* Calculate the angle from the arc tangent of two sides or from the sine and cosine of the angle $(0 \le \text{angle} \le 360^\circ)$ and assign it to a parameter	D13 X ANG Y

7.4 If-Then Decisions with Q Parameters

The TNC can make logical If-Then decisions by comparing a ${\bf Q}$ parameter with another ${\bf Q}$ parameter or with a numerical value.

Jumps

The jump target is specified by a label number in the decision block. If the programmed condition is fulfilled, the TNC continues the program at the specified label. If it is not fulfilled, it continues with the next block.

To jump to another program, enter a program call with % (see page 6-8) after the block with the target label.

Unconditional jumps

An unconditional jump is programmed by entering a conditional jump whose condition is always true. Example:

If 10 equals 10, go to label 1 D09 P01 +10 P02 +10 P03 1

Select the jump function to display the following options:

D9 D10 IF X EQ Y IF X NE GOTO GOTO	D11 IF X GT Y GOTO	D12 IF X LT Y GOTO		END

Overview

	Soft key
D9: IF EQUAL, JUMP Example: D09 P01 +Q1 P02 +Q3 P03 5 * If the two values or parameters are equal, jump to the given label.	D9 IF X EQ Y GOTO
D10: IF NOT EQUAL, JUMP Example: D10 P01 +10 P02 -Q5 P03 10 * If the two values or parameters are not equal, jump to the given label.	D10 IF X NE Y GOTO
D11: IF GREATER THAN, JUMP Example: D11 P01 +Q1 P02 +10 P03 5 * If the first value or parameter is greater than the second value or parameter, jump to the given label.	D11 IF X GT V GOTO
D12: IF LESS THAN, JUMP Example: D12 P01 +Q5 P02 +0 P03 1 * If the first value or parameter is less than the second value or parameter, jump to the given label.	D12 IF X LT Y GOTO

Jump example

You want to jump to program 100.H as soon as Q5 becomes negative.

```
      .
      .

      N5
      D00 Q5 P01 +10 *
      .

      .
      .

      .
      .

      N9
      D02 Q5 P01 +Q5 P02 +12 *
      .

      N10
      D12 P01 +Q5 P02 +0 P03 5 *
      .

      .
      .

      .
      .

      .
      .

      N15
      G98 L5 *
      .

      N16
      % 100.H *
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

      .
      .

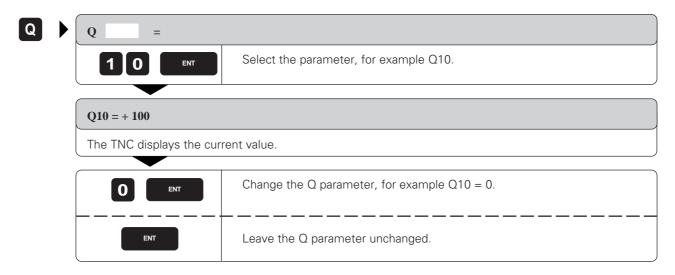
      .
      .

      .
      .

      .
      .

      .
      .

    <tr
```


7.5 Checking and Changing Q Parameters

During a program run or program test, ${\bf Q}$ parameters can be checked and changed if necessary.

Preparation:

- If you are in a program run, interrupt it (for example by pressing the machine STOP key and the INTERNAL STOP soft key)
- If you are doing a test run, interrupt it

To call the Q parameter:

Select the diverse functions to call the following options for the TNC 425, TNC 415 B and TNC 407:

ŀ						
- 1	D14	D15	D19			
١						END
١	ERROR=	PRINT	PLC=			
L						

Select the diverse functions to call the following options for the TNC 426:

D14 D15 D16 D17 D18 D19 SYS-DATUM SYS-DATUM PLC=	
--	--

Displaying error messages

D14 ERROR=

With the function D14: ERROR you can call messages that were preprogrammed by the machine tool builder.

If the TNC encounters a block with D14 during a program run or test run, it will interrupt the run and display an error message. The program must then be restarted.

Input

Example: D14 P01 254

The TNC then displays the text stored under error number 254.

Error number to be entered	Prepared dialog text
0 to 299	D14: ERROR CODE 0 299
300 to 399	PLC: ERROR 0 99
400 to 499	CYCLE PARAMETER 0 99
300 to 999 (TNC 426 only)	No standard dialog text prepared
1000 to 1099 (TNC 426 only)	Internal error message (see table on next page)

Your machine tool builder may have programmed a dialog text that differs from the above.

Error code	Error text	
1000	SPINDLE MUST BE TURNING	
1001	TOOL AXIS IS MISSING	
1002	SLOT WIDTH TOOL LARGE	
1003	TOOL RADIUS TOO LARGE	
1004	RANGE EXCEEDED	
1005	START POSITION INCORRECT	
1006	ROTATION NOT PERMITTED	
1007	SCALING FACTOR NOT PERMITTED	
1008	MIRRORING NOT PERMITTED	
1009	DATUM SHIFT NOT PERMITTED	
1010	FEED RATE IS MISSING	
1011	ENTRY VALUE INCORRECT	
1012	WRONG SIGN PROGRAMMED	
1013	ENTERED ANGLE NOT PERMITTED	
1014	TOUCH POINT INACCESSIBLE	
1015	TOO MANY POINTS	
1016	CONTRADICTORY ENTRY	
1017	CYCL INCOMPLETE	
1018	PLANE WRONGLY DEFINED	
1019	WRONG AXIS PROGRAMMED	
1020	WRONG RPM	
1021	RADIUS COMP. UNDEFINED	
1022	ROUNDING-OFF UNDEFINED	
1023	ROUNDING RADIUS TOO LARGE	
1024	PROGRAM START UNDEFINED	
1025	EXCESSIVE SUBPROGRAMMING	
1026	ANGLE REFERENCE MISSING	

Output through an external data interface

D15 PRINT

The function D15: PRINT transfers the values of Q parameters and error messages through the data interface, for example to a printer.

 D15: PRINT with numerical values up to 200 Example: D15: PRINT 20

Transfers the corresponding error message (see overview for D14).

 D15: PRINT with Q parameter Example: D15: PRINT Q20

Transfers the value of the corresponding Q parameter.

You can transfer up to six Q parameters and numerical values simultane-

ously.

Example: D15 P01 1 P02 Q1 P03 2 P04 Q2

The following notes apply to TNC 407, TNC 415 B and TNC 425 controls:

- If the part program is interrupted while D15 is active, you must close the interface with the CLOSE RS-232-C soft key (only available on TNC 407, TNC 415 B and TNC 425).
- When D15 is used for transferring values to a PC, the TNC generates the file %FN15RUN.A in the PC memory to store the transferred values (only available on TNC 407, TNC 415 B and TNC 425).

The following note applies to TNC 426 controls:

• The path for storing the texts and Q parameter values is entered in the menu option PRINT or PRINT TEST (see "Setting the Data Interface").

Formatted output of texts and Q parameter values

The path for storing the texts and Q parameter values is entered in the menu option PRINT or PRINT TEST (see "Setting the Data Interface", page 10-5).

The function D16: F-PRINT transfers texts and Q parameter values in a selectable format through the data interface, for example to a printer. When you store the values in the TNC memory or transfer them to a PC, the TNC stores the data in the file %D16RUN.A (output in program run mode) or in the file %D16SIM.A (output in test run mode). You can define the output format by programming a text file.

Example D16 P01 TNC:\MASK\MASK1.A

Example of a text file to define the output format:

```
"TEST RECORD BUCKET WHEEL GRAVITY CENTER";
"NO. OF MEASURED VALUES : = 1";
"X1 = %4.3LF", Q31;
"Y1 = %4.3LF", Q32;
"Z1 = %2LF", Q33;
"**************
```

Associated file %D16SIM.A

TEST RECORD BUCKET WHEEL GRAVITY CENTER

```
NO. OF MEASURED VALUES: = 1
X1 = 149.360
Y1 = 25.509
Z1 = 37
******
```

Special character	Function
"	Define output format for texts and variables between the quotation marks
%4.3LF	Define format for variables (long, floating): 4 places before and 3 places behind the decimal point
,	Separation character between output format and parameter
	End of block character

Reading system data

With the function D18: SYS-DATUM READ you can read system data and store them in Q parameters. You select the system data through a group number and additionally through a number and an index.

Group name	Group No.	Number	Index	System data
Program information	10	1		MM/inch condition
		2		Overlap factor for pocket milling
		3		Number of active fixed cycle
Machine status	20	1		Active tool number
		2		Prepared tool number
		3		Active tool axis
		4		Programmed spindle rpm
		5		Active spindle status
		8		Coolant status
		9		Active feed rate
Data from the tool table	50	1		Tool length
		2		Tool radius
		3		Tool radius R2
		4		Oversize for tool length DL
		5		Oversize for tool radius DR
		6		Oversize for tool radius DR2
		7		Tool inhibited (0 or 1)
		8		Number of replacement tool
		9		Maximum tool age TIME1
		10		Maximum tool age TIME2
		11		Current tool age CUR.TIME
		12		PLC status
		13		Maximum tooth length LCUTS
		14		Maximum plunge angle ANGLE
		15		TT: Number of teeth CUT.
		16		TT: Wear tolerance for length LTOL
		17		TT: Wear tolerance for radius RTOL
		18		TT: Rotational direction DIRECT (3 or 4)
		19		TT: Offset for radius R-OFFS
		20		TT: Offset for length L-OFFS
		21		TT: Break tolerance in length LBREAK
		22		TT: Break tolerance in radius RBREAK

Group name	Group No.	Number	Index	System data
Active transformations	210	1	_	Basic rotation in MANUAL mode
		2	_	Rotation programmed with Cycle 10
		3	_	Active mirror axis
				0: mirroring not active
				+1: X axis mirrored
				+2: Y axis mirrored
				+4: Z axis mirrored
				+8: IV axis mirrored
				+16: V axis mirrored
				Combinations = sum of individual axes
		4	1	Active scaling factor in X axis
		4	2	Active scaling factor in Y axis
		4	3	Active scaling factor in Z axis
		4	4	Active scaling factor in IV axis
		4	5	Active scaling factor in V axis
		5	1	3D ROT A axis
		5	2	3D ROT B axis
		5	3	3D ROT C axis

Example: Read a BASIC ROTATION from the MANUAL mode

and store it in Q25 D18 Q25 P01 210 P02 1

Transfer to the PLC

The function D19: PLC transfers up to two numerical values or Ω parameter contents to the PLC.

Increments and units: 0.1 µm or 0.0001°

Example D19 P01 +10 P02 +Q3

The numerical value 10 means 1 μm or 0.001°.

7.7 Entering Formulas Directly

You can enter mathematical formulas that include several operations either by soft key or directly from the ASCII keyboard. We recommend entering the operations by soft key, since this eliminates the possibility of syntax errors.

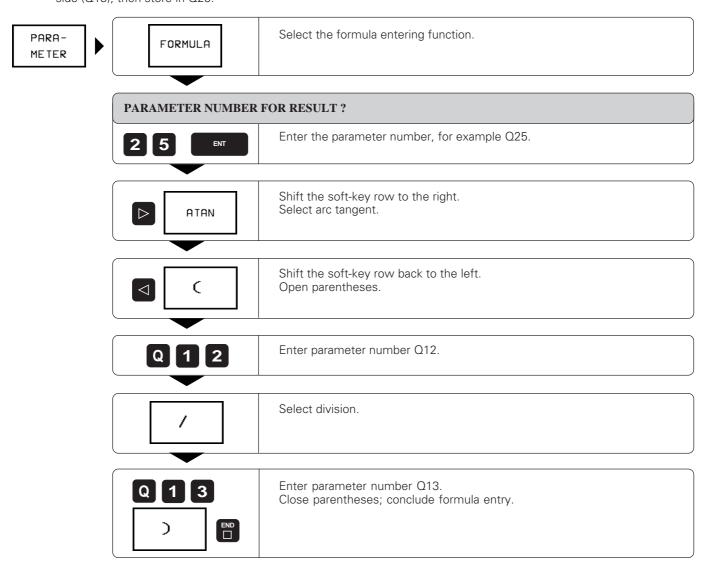
Overview of functions

Mathematical function	Soft key
Addition Example: $Q10 = Q1 + Q5$	+
Subtraction Example: Q25 = Q7 - Q108	_
Multiplication Example: Q12 = 5 * Q5	*
Division Example: Q25 = Q1 / Q2	/
Open parentheses Example: Q12 = Q1 * (Q2 + Q3)	C
Close parentheses Example: Q12 = Q1 * (Q2 + Q3))
Square Example: Q15 = SQ 5	SQ
Square root Example: Q22 = SQRT 25	SQRT
Sine of an angle Example: Q44 = SIN 45	SIN
Cosine of an angle Example: Q45 = COS 45	cos
Tangent of an angle Example: Q46 = TAN 45	TAN

7.7 Entering Formulas Directly

Mathematical function	Soft key
Arc sine: Inverse of the sine. Determine the angle from the ratio of the opposite side to the hypotenuse. Example: Q10 = ASIN 0.75	ASIN
Arc cosine: Inverse of the cosine. Determine the angle from the ratio of the adjacent side to the hypotenuse. Example: Q11 = ACOS Q40	ACOS
Arc tangent: Inverse of the tangent. Determine the angle from the ratio of the opposite to the adjacent side. Example: Q12 = ATAN Q50	ATAN
Powers (x^y) Example: Q15 = 3^3	^
π (3.14159)	PΙ
Natural logarithm (LN) of a number, base 2.7183 Example: Q15 = LN Q11	LN
Logarithm of a number, base 10 Example: Q33 = LOG 022	LOG
Exponential function (2.7183°) Example: Q1 = EXP Q12	EXP
Negate (multiply by -1) Example: Q2 = NEG Q1	NEG
Drop places after decimal point (form an integer) Example: Q3 = INT Q42	INT
Absolute value Example: Q4 = ABS Q22	ABS
Drop places before the decimal point (form a fraction) Example: Q5 = FRAC Q23	FRAC

Rules for formulas


 Higher-level operations are performed first (multiplication and division before addition and subtraction):

Q1 =
$$5 \times 3 + 2 \times 10 = 35 \Rightarrow$$
 1st step: $5 \times 3 = 15$
2nd step: $2 \times 10 = 20$
3rd step: $15 + 20 = 35$
Q2 = $50 \times 10 - 3 \times 3 = 73 \Rightarrow$ 1st step: $10^2 = 100$
2nd step: $3^3 = 27$
3rd step: $100 - 27 = 73$

• Distributive law: a(b + c) = ab + ac

Programming example

Calculate an angle with arc tangent as opposite side (Q12) and adjacent side (Q13), then store in Q25.

Resulting NC block: Q25 = ATAN (Q12 / Q13)

7.8 Measuring with the 3D Touch Probe During Program Run

The 3D touch probe can measure positions on the workpiece while the program is being run.

Applications:

- Measuring differences in the height of cast surfaces
- Tolerance checking during machining

To program the use of a touch probe, press the TOUCH PROBE key. You pre-position the probe to automatically probe the desired position. The coordinate measured for the probe point is stored under a Q parameter.

The TNC interrupts the probing process if the stylus is not deflected within a certain distance (selectable via MP6130).

Upon contact, the position coordinates of the probe are stored in the parameters Q115 to Q119. The stylus length and radius are not included in these values.

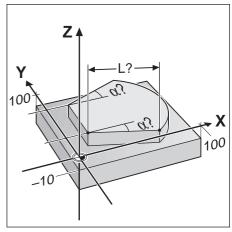
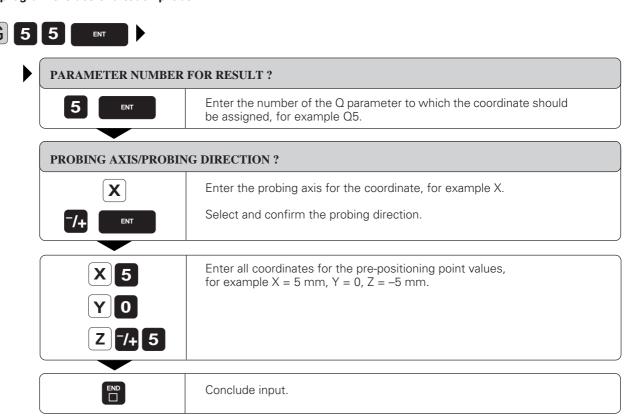
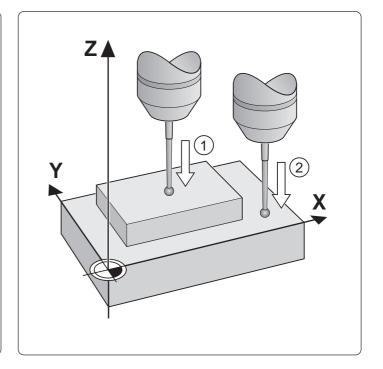



Fig. 7.4: Dimensions to be measured

- Pre-position the probe manually to avoid a collision when the programmed pre-positioning point is approached.
- Use the tool data (length, radius, axis) either from the calibrated data or from the last TOOL CALL block.
 Selection is made with machine parameter MP 7411 (see page 11-13).

To program the use of a touch probe:

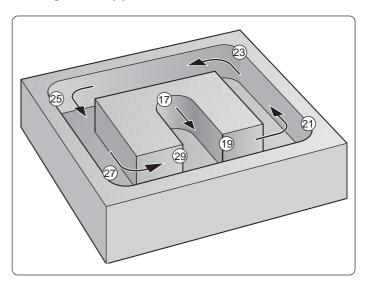


Resulting NC block: G55 P01 Q5 P02 X- X+5 Y+0 Z-5 *

Measuring with the 3D Touch Probe During Program Run

Example for exercise: Measuring the height of an island on a workpiece

Coordinates for pre-positioning the 3D touch probe Touch point 1: 20 mm (Q11)X = Y = (Q12)50 mm (Q13)Z = 10 mm Touch point 2: 50 mm (Q21)X = = 10 mm (Q22)Z = 0 mm (Q23)



Part program %S717I G71 * Start of program N10 D00 Q11 P01 +20 * N20 D00 Q12 P01 +50 * N50 D00 Q22 P01 +10 * N60 D00 Q23 P01 +0 * N70 T0 G17 point) N110 G55 P01 20 P02 Z- X+Q21 Y+Q22 Z+Q23 * Probe in negative direction; store Z coordinate in Q20 (second point) N120 D02 Q1 P01 +Q20 P02 +Q10 *Measure height of island and assign to Q1 N99999 %S717I G71 *

7.9 Programming Examples

Rectangular pocket with island, corner rounding and tangential approach

Pocket center coordinates:	X Y	= 50 mm (Q1) = 50 mm (Q2)
Pocket length Pocket width	X Y	= 90 mm (Q3) = 70 mm (Q4)
Working depth Corner radius	Z R	= $(-)15 \text{ mm } (-Q5)$ = $10 \text{ mm } (Q6)$
Milling feed rate	F	= 200 mm/min (Q7)

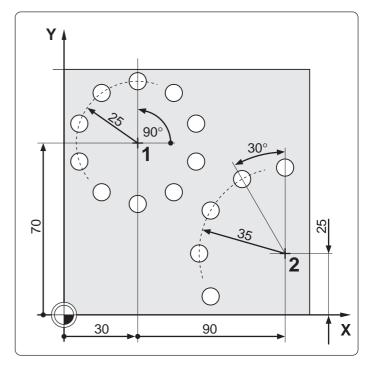
Part program	
%S77I G71 *	Start of program
N10 D00 Q1 P01 +50 *	
N20 D00 Q2 P01 +50 *	
N30 D00 Q3 P01 +90 *	Assign pocket data to the Q parameters
N40 D00 Q4 P01 +70 *	
N50 D00 Q5 P01 +15 *	
N60 D00 Q6 P01 +10 *	
N70 D00 Q7 P01 +200 *	
N80 G30 G17 X+0 Y+0 Z-20 *	Define workpiece blank
N90 G31 X+100 Y+100 Z+0 *	
N100 G99 T1 L+0 R+5 *	
N110 T1 G17 S1000 *	
N120 G00 G40 G90 Z+100 M06 *	
N130 D04 Q13 P01 +Q3 P02 +2 *	The length of the pocket is halved for the path of traverse in block N200
N140 D04 Q14 P01 +Q4 P02 +2 *	The width of the pocket is halved for the paths of traverse in
	blocks N220, N300
N150 D04 Q16 P01 +Q6 P02 +4 *	Rounding radius for tangential approach
N160 D04 Q17 P01 +Q7 P02 +2 *	Feed rate at corners is half the feed rate for linear traverse

Continued on next page...

7.9 Programming Examples

N170 X+Q1 Y+Q2 M03 * N180 Z+2 * N190 G01 Z-Q5 FQ7 *	
N200 G41 G91 X+Q13 G90 Y+Q2 *	First contour point on the side
N210 G26 RQ16 *	Soft (tangential) approach with radius Q16 (= 5 mm)
N220 G91 Y+Q14 *	
N230 G25 RQ6 *	
N240 X-Q3 *	
N250 G25 RQ6 *	
N260 Y-Q4 *	Mill sides of rectangular pocket (incremental)
N270 G25 RQ6 *	
N280 X+Q3 *	
N290 G25 RQ6 *	
N300 Y+Q14 *	
N310 G27 RQ16 *	Soft (tangential) departure
N320 G00 G40 G90 X+Q1 Y+Q2 *	Depart contour (absolute to pocket center), cancel radius compensation
N330 Z+100 M02 *	
N99999 %S77I G71 *	

Bolt hole circles


Bore pattern distributed over a full circle:

The entry values are listed in the program below in blocks N10 to N80.

Movements in the plane are programmed with polar coordinates.

Bore pattern distributed over a circle sector:

The entry values are listed below in blocks N150 to N190; Ω 5, Ω 7 and Ω 8 remain the same.

Part program % BOLTCIRC G71 * Load data for bolt hole circle 1 N10 D00 Q1 P01 +30 * Circle center X coordinate N20 D00 Q2 P01 +70 * Circle center Y coordinate N30 D00 Q3 P01 +11 * Number of holes N40 D00 Q4 P01 +25 * Bolt circle radius N50 D00 Q5 P01 +90 * Starting angle N90 G30 G17 X+0 Y+0 Z-20 * N100 G31 G90 X+100 Y+100 Z+0 * N110 G99 T1 L+0 R+4 3 N120 T1 G17 S2500 * N130 G83 P01 +Q7 P02 -Q8 P03 +5 P04 0 P05 250 * Cycle definition: Pecking N140 L1,0 * Call bolt hole circle 1 Load data for bolt hole circle 2 (only re-enter changed data) N160 D00 Q2 P01 +25 *New circle center Y coordinate N170 D00 Q3 P01 5 * New number of holes

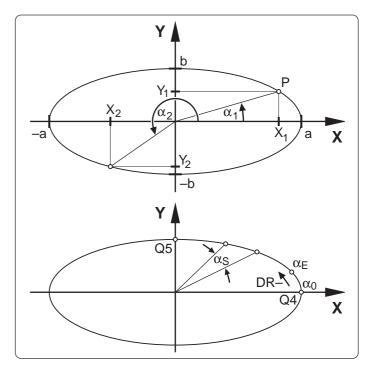
Continued on next page...

N220 G98 L1 *	
N230 D00 Q10 P01 +0 *	Set the counter for finished holes
	If the hole angle increment has been entered, jump to LBL 10
N250 D04 Q6 P01 +360 P02 +Q3 * N260 G98 L10 *	Calculate the hole angle increment, distribute holes over 360°
N270 D01 Q11 P01 +Q5 P02 +Q6 *	Calculate second hole position from the start angle and hole angle increment
N280 G90 I+Q1 J+Q2 G00 G40 *	Set pole at bolt circle center
N290 G10 R+Q4 H+Q5 M3 *	
N300 G00 Z+Q7 M99 *	Move in Z to setup clearance, call cycle
N310 D01 Q10 P01 +Q10 P02 +1 *	Count completed holes
N320 D09 P01 +Q10 P02 +Q3 P03 99 *	
N330 G98 L2 *	
N340 G10 G40 G90 R+Q4 H+Q11 M99 *	Drill second hole and further holes
N350 D01 Q10 P01 +Q10 P02 +1 *	Count finished holes
N360 D01 Q11 P01 +Q11 P02 +Q6 *	Calculate angle for next hole
N370 D12 P01 +Q10 P02 +Q3 P03 2 *	
N380 G98 L99 *	
N390 G00 G91 Z+200 *	Retract in Z
N400 G98 L0 *	End of subprogram
N99999 % BOLTCIRC G71 *	. •

Ellipse

X-coordinate calculation: $X = a \cos \alpha$ Y-coordinate calculation: $Y = b \sin \alpha$

a, b : Semimajor and semiminor axes of the ellipse


 α : Angle between the leading axis and the connecting line from P to the center of the ellipse.

X₀, Y₀: Center of the ellipse

The points of the ellipse are calculated and connected by many short lines. The more points that are calculated and the shorter the lines connecting them, the smoother the curve becomes.

The machining direction can be altered by changing the entries for the starting angle and end angle.

The input parameters are listed below in blocks N10 to N120. Calculations are programmed with the FORMULA function.

Part program % Ellipse G71 * Load data N10 D00 Q1 P01 +50 *X coordinate for center of ellipse N20 D00 Q2 P01 +50 * Y coordinate for center of ellipse N30 D00 Q3 P01 +50 * Semiaxis in X N40 D00 Q4 P01 +20 * Semiaxis in Y N50 D00 Q5 P01 +0 * Starting angle N60 D00 Q6 P01 +360 * End angle N70 D00 Q7 P01 +40 * Number of calculation steps N80 D00 Q8 P01 +0 * Rotational position N90 D00 Q9 P01 +10 * Depth N120 D00 Q12 P01 +2 *..... Setup clearance in Z N130 G30 G17 X+0 Y+0 Z-20 * N140 G31 G90 X+100 Y+100 Z+0 * N150 G99 T1 L+0 R+2.5 * N160 T1 G17 * N170 G00 G40 G90 Z+200 * N180 L10,0 * Execute subprogram ellipse N190 G00 Z+200 M2*

Continued on next page...

N200 G98 L10 *	
N210 G54 X+Q1 Y+Q2 *	Shift datum to center of ellipse
N220 G73 G90 H+Q8 *	Activate rotation if Q8 is loaded
N230 Q35 = (Q6-Q5)/Q7	Calculate angle increment (end angle to starting angle
	divided by the number of steps)
N240 Q36 = Q5	Set current angle for calculation = starting angle
N250 Q37 = 0	Set counter for milled steps
N260 Q21 = Q3 * COS Q36	Calculate X coordinate for starting point
N270 Q22 = Q4 * SIN Q36	
N280 G00 G40 G90 X+Q21 Y+Q22 M3 *	Move to starting point in the plane
N290 Z+Q12 *	
N300 G01 Z-Q9 FQ10 *	Plunge to milling depth at plunging feed rate
N310 G98 L1 *	
N320 Q36 = Q36 + Q35	
N330 Q37 = Q37 + 1	
N340 Q21 = Q3 * COS Q36	
N350 Q22 = Q4 * SIN 036	
N360 G01 X+Q21 Y+Q22 FQ11	
N370 D12 P01+Q37 P02+Q7 P031 *	
N380 G73 G90 H+0 *	
N390 G54 *	
N400 G00 G40 G90 Z+Q12 *	Move in Z to setup clearance
N410 G98 L0 *	End of subprogram
N99999 % ELLIPSE G71 *	
)

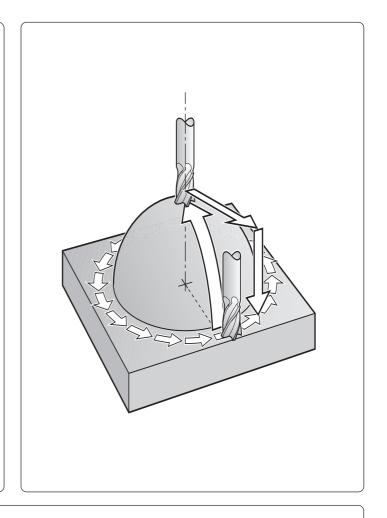
Hemisphere machined with end mill

Notes on the program:

- The tool moves upward in the Z/X plane.
- You can enter an oversize in block 12 (Q12) if you want to machine the contour in several steps.
- The tool radius is automatically compensated with parameter Q108.

The program works with the following quantities:

•	Solid angle:	Starting angle	Q1
		End angle	Q2
		Increment	Q3
•	Sphere radius		Q4
•	Setup clearance		Q5
•	Plane angle:	Starting angle	Q6
		End angle	Q7
		Increment	Q8
•	Center of sphere:	X coordinate	Q9
		Y coordinate	Q10
•	Milling feed rate		Q11
•	Oversize		Q12


The parameters additionally defined in the program have the following meanings:

- Q15: Setup clearance above the sphere
- Q21: Solid angle during machining
- Q24: Distance from center of sphere to tool center
- Q26: Plane angle during machining

Part program

• Q108: TNC parameter with tool radius

N160 T1 G17 S2500 * Call tool

%S712I G71 * Start of program N10 D00 Q1 P01 +90 * \$\text{N20 D00 Q2 P01 +0 *}\$ N30 D00 Q3 P01 +5 * \$\text{N40 D00 Q4 P01 +45 *}\$ N50 D00 Q5 P01 +2 * \$\text{N60 D00 Q6 P01 +0 *}\$ N70 D00 Q7 P01 +360 * \$\text{N80 D00 Q8 P01 +5 *}\$ N90 D00 Q9 P01 +50 * \$\text{N110 D00 Q11 P01 +500 *}\$ N110 D00 Q12 P01 +0 * Assign the sphere data to the parameters N130 G30 G17 X+0 Y+0 Z-50 * Define workpiece blank N140 G31 G90 X+100 Y+100 Z+0 * Define tool

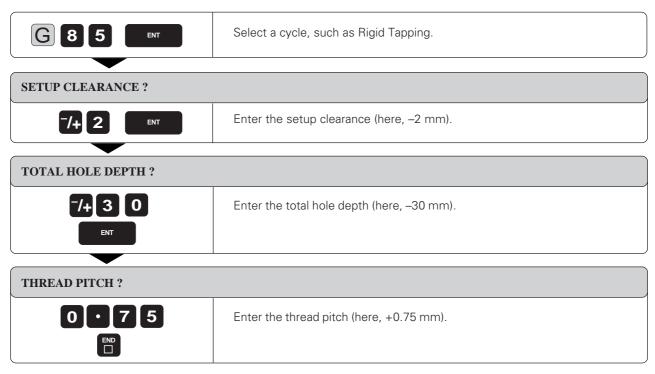
N190 Z+100 M02 * Retract in the infeed axis; return to beginning of program

Continued on next page...

N200 G98 L10 * N210 D01 Q15 P01 +Q5 P02 +Q4 *	
N220 D00 Q21 P01 +Q1 *	Determine starting and calculation values
N250 G54 X+Q9 Y+Q10 Z-Q4 *	Shift datum to center of sphere
N260 G73 G90 H±06 *	Rotation for program start (starting plane angle)
N270 I+0 J+0 *	Hotation for program start (starting plane angle)
N280 G11 R+Q24 H+Q6 FQ11 *	Pre-nositioning before machining
N290 G98 L1 *	To positioning solore magnifing
N300 I+Q108 K+0 *	Set pole (X/7 plane)
N310 G01 Y+0 Z+0 FQ11 *	Pre-positioning at each arc beginning
N320 G98 L2 *	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
N330 G11 R+Q4 H+Q21 FQ11 *	
N340 D02 Q21 P01 +Q21 P02 +Q3 *	Mill the sphere upward until the highest point is reached
N350 D11 P01 +Q21 P02 +Q2 P03 2 *	
N360 G11 R+Q4 H+Q2 *	Mill the highest point on the sphere
N370 G00 Z+Q15 *	Retract in Z
N380 X+Q24 *	Retract in X
N390 D01 Q26 P01 +Q26 P02 +Q8 *	
	Reset solid angle for machining to the starting value
N410 G73 G90 H+Q26 *	Activate rotation for next operation
N420 D12 P01 +Q26 P02 +Q7 P03 1 *	
N430 D09 P01 +Q26 P02 +Q7 P03 1 *	Rotate the coordinate system around the Z axis until the end
NA 40 070 000 II 0 *	plane angle is reached
N440 G73 G90 H+0 *	
N450 G54 X+0 Y+0 Z+0 *	
N460 G98 L0 * N99999 %S712I G71 *	End of supprogram
1/D171/20 ERRERNI	

8.1 General Overview of Cycles

Frequently recurring machining sequences that comprise several working steps are stored in the control memory as standard cycles. Coordinate transformations and other special functions are also provided as standard cycles.


These cycles are grouped into the following types:

- Simple fixed cycles such as pecking and tapping, as well as the milling operations slot milling, rectangular pocket milling and circular pocket milling.
- SL (Subcontour List) Cycles, group I. These allow machining of relatively complex contours composed of several overlapping subcontours.
- **SL Cycles**, group II, for contour-oriented machining. During rough-out and finishing, the tool follows the contour as defined in the SL cycles. The cutter infeed positions are determined automatically by the control.
- Coordinate transformation cycles. These enable datum shifts, rotation, mirroring, enlarging and reducing for various contours.
- Special cycles such as dwell time, program call, and oriented spindle stop.

Programming a cycle

Defining a cycle

Enter the G function for the desired cycle and program it in the dialog. The following example illustrates how cycles are defined:

Resulting NC block: G85 P01 -2 P02 -30 P03 +0.75 *

General Overview

Cycle call

The following cycles become effective automatically as soon as they are defined in the part program:

- Coordinate transformation cycles
- Dwell time cycle
- SL cycles which determine the contour and the global parameters

All other cycles must be called separately. Further information on cycle calls is provided in the descriptions of the individual cycles.

If the cycle is to be executed after the block in which it was called, program the cycle call

- with G79
- with miscellaneous function M99.

If the cycle is to be executed after every positioning block, it must be called with miscellaneous function M89 (depending on the machine parameters).

M89 is cancelled with

- M99
- G79
- A new cycle definition

Prerequisites:

The following data must be programmed before a cycle call:

- Blank form for graphic display
- Tool call
- Positioning block for starting position X, Y with tool radius compensation G40
- Positioning block for starting position Z (setup clearance)
- Direction of spindle rotation (miscellaneous functions M3/M4)
- Cycle definition

Dimensions in the tool axis

The dimensions for the tool axis are always referenced to the position of the tool at the time of the cycle call, and are interpreted by the control as incremental dimensions. It is not necessary to program G91.

The control assumes that the tool is located at clearance height over the workpiece at the beginning of the cycle (except for SL cycles of group II).

PECKING (G83)

Process

- The tool drills from the starting point to the first pecking depth at the programmed feed rate.
- When it reaches the first pecking depth, the tool retracts in rapid traverse to the starting position and advances again to the first pecking depth minus the advanced stop distance t (see calculations).
- The tool advances with another infeed at the programmed feed rate.
- Drilling and retracting are performed alternately until the programmed total hole depth is reached.
- After the dwell time at the hole bottom, the tool is retracted to the starting position in rapid traverse for chip breaking.

Fig. 8.1: PECKING cycle

Input data

- SETUP CLEARANCE (a):
 Distance between tool tip (at starting position) and workpiece surface
- TOTAL HOLE DEPTH (B):
 Distance between workpiece surface and bottom of hole (tip of drill taper). The algebraic sign determines the working direction (a negative value means negative working direction).
- PECKING DEPTH ©:

Infeed per cut.

If the TOTAL HOLE DEPTH equals the PECKING DEPTH, the tool will drill to the programmed total hole depth in one operation. The PECKING DEPTH does not have to be a multiple of the TOTAL HOLE DEPTH.

If the PECKING DEPTH is programmed greater than the TOTAL HOLE DEPTH, the tool only advances to the specified TOTAL HOLE DEPTH.

- DWELL TIME in seconds:
 - Amount of time the tool remains at the total hole depth for chip breaking.
- FEED RATE:

Traversing speed of the tool during drilling.


Calculations

The advanced stop distance *t* is automatically calculated by the control:

- At a total hole depth of up to 30 mm, t = 0.6 mm
- At a total hole depth exceeding 30 mm, t = total hole depth / 50 Maximum advanced stop distance: 7 mm

Example: PECKING

Hole coordinates: X = 20 mmY = 30 mmX = 80 mmY = 50 mmHole diameter: 6 mm Setup clearance: 2 mm Total hole depth: 15 mm Pecking depth: 10 mm Dwell time: 1 s Feed rate: 80 mm/min

PECKING cycle in a part program

%S85I G71 *	Start of program
N10 G30 G17 X+0 Y+0 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+3 *	Define tool
N40 T1 G17 S1200 *	Call tool
N50 G83 P01 –2 P02 –15 P03 –10 P04 1 P05 80 * .	Define PECKING cycle
N60 G00 G40 G90 Z+100 M06 *	Retract in the infeed axis, insert tool
N70 X+20 Y+30 M03 *	
N80 Z+2 M99 *	Pre-position in Z to setup clearance, call cycle
N90 X+80 Y+50 M99 *	
N100 Z+100 M02 *	Retract in the infeed axis, end of program
N99999 %S85I G71 *	

TAPPING with floating tap holder (G84)

Process

- The thread is cut in one pass.
- Once the tool has reached the total hole depth, the direction of spindle rotation is reversed and the tool is retracted to the starting position at the end of the dwell time.
- At the starting position, the direction of spindle rotation reverses once again.

Required tool

A floating tap holder is required. It must compensate the tolerances between feed rate and spindle speed during the tapping process.

1. 2. 3. 4. 4. B

Fig. 8.2: TAPPING cycle

Input data

- SETUP CLEARANCE (A):
 - Distance between tool tip (at starting position) and workpiece surface. Standard value: approx. 4 x thread pitch
- TOTAL HOLE DEPTH (B) (thread length):
 - Distance between workpiece surface and end of thread. The algebraic sign determines the working direction (a negative sign means negative working direction).
- DWELL TIME:
 - Enter a dwell time between 0 and 0.5 seconds to avoid wedging of the tool during retraction (further information is available from the machine manufacturer).
- FEED RATE:
 - Traversing speed of the tool during tapping.

Calculations

The feed rate is calculated as follows:

$$F = S \times p$$

where F is the feed rate (mm/min), S is the spindle speed (rpm) and p is the thread pitch (mm).

- When a cycle is being run, the spindle speed override knob is disabled. The feed rate override knob is only active within a limited range (preset by the machine manufacturer).
- For tapping right-hand threads activate the spindle with M3, for left-hand threads use M4.

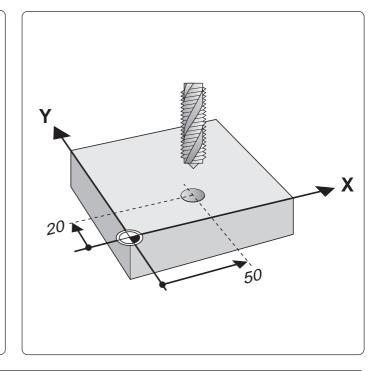
Example: Tapping with a floating tap holder

Cutting an M6 thread at 100 rpm

Tapping coordinates:

X = 50 mm Y = 20 mm

Pitch p = 1 mm


 $F = S \times p \Rightarrow F = 100 \cdot 1 = 100 \text{ mm/min}$

0.4 s

Setup clearance: 3 mm
Thread depth: 20 mm

Dwell time:

Feed rate: 100 mm/min

TAPPING cycle in a part program

 %S87I G71 *
 Start of program

 N10 G30 G17 X+0 Y+0 Z-20 *
 Define workpiece blank

 N20 G31 G90 X+100 Y+100 Z+0 *
 Define tool

 N40 T1 G17 S100 *
 Call tool

 N50 G84 P01 -5 P02 -20 P03 0.4 P04 100 *
 Define TAPPING cycle

 N60 G00 G40 G90 Z+100 M06 *
 Retract in the infeed axis, insert tool

 N70 X+50 Y+20 M03 *
 Pre-position in the plane, spindle ON

 N80 Z+3 M99 *
 Pre-position in Z to setup clearance, call cycle

 N90 Z+100 M02 *
 Retract in the infeed axis, end of program

 N99999 %S87I G71 *

RIGID TAPPING (G85)

Machine and control must be specially prepared by the machine manufacturer to enable rigid tapping.

Process

The thread is cut without a floating tap holder in one or several passes.

Rigid tapping offers the following advantages over tapping with a floating tap holder:

- Higher machining speeds possible
- · Repeated tapping of the same thread; repetitions are enabled via spindle orientation to the 0° position during cycle call (depending on machine parameter 7160; see page 11-13).
- Increased traverse range of the spindle axis due to absence of a floating tap holder

- The control calculates the feed rate from the spindle speed. If the spindle speed override is used during tapping, the feed rate is automatically adjusted.
- The feed rate override knob is disabled.

Input data

- SETUP CLEARANCE (A): Distance between tool tip (at starting position) and workpiece surface.
- Distance between workpiece surface (beginning of thread) and end of thread. The algebraic sign determines the working direction: a negative value means negative working direction.
- THREAD PITCH (C):

The sign differentiates between right-hand and left-hand threads:

- + = right-hand thread
- = left-hand thread

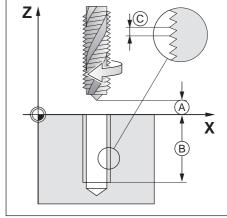


Fig. 8.3: Input data for RIGID TAPPING cycle

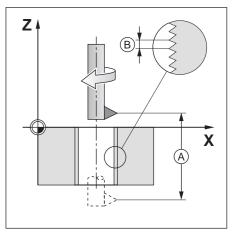
THREAD CUTTING (G86)

Machine and control must be specially prepared by the machine manufacturer to enable thread cutting.

Process

Cycle G86 THREAD CUTTING is performed by means of spindle control. The tool moves with the active spindle speed from its current position to the entered depth. As soon as it reaches the end of thread, spindle rotation is stopped. Tool approach and departure must be programmed separately. The most convenient way to do this is by using OEM cycles. The machine manufacturer can give you further information.

Input data


• THREADING DEPTH (A): Distance between current tool position and end of thread. The algebraic sign determines the working direction: a negative value means negative working direction.

THREAD PITCH (B):

The sign differentiates between right-hand and left-hand threads:

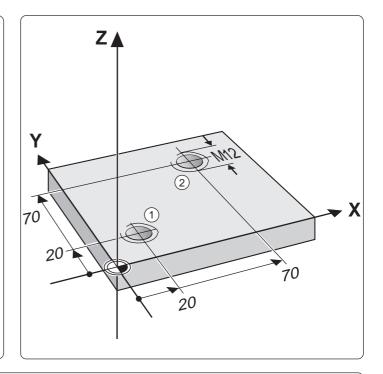
+ = right-hand thread (M3 with negative THREADING DEPTH)

= left-hand thread (M4 with negative THREADING DEPTH)

Input data for THREAD CUTTING Fig. 8.4:

- The control calculates the feed rate from the spindle speed. If the spindle speed override is used during thread cutting, the feed rate is automatically adjusted.
- The feed rate override knob is disabled.
- The TNC automatically activates and deactivates spindle rotation. Do not program M3/M4 before cycle call.

Example: Thread cutting with a threading tool


Cutting M12 threads into through holes in an upward movement

Coordinates of the threaded holes:

Workpiece thickness: 20 mm

Thread pitch p: 1.75 mm Spindle speed: 100 rpm

Setup clearance at top: 5 mm Setup clearance at bottom: 5 mm

THREAD CUTTING cycle in a part program

%C18 G71 *

N10 G30 G17 X+0 Y+0 Z-20*

N20 G31 G90 X+100 Y+100 Z+0*

N30 G99 T1 L+0 R+6*

N40 T1 G17 S100*

N50 G00 G40 G90 Z+50*

mm, negative because of upward working direction

N80 L1,0* Call subprogram

N90 X+70Y+70* Approach 2nd hole in the X/Y plane

N100 L1,0* Call subprogram

N110 G00 Z+100 M2* End of main program

N120 G98 L1*

(dependent on core diameter)

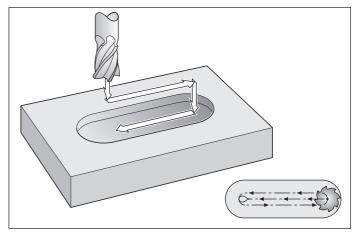
clearance above workpiece surface

N180 G70*

N180 G79* Cycle call

N190 G98 L0* End of subprogram N99999 %C18 G71*

SLOT MILLING (G74)


Process

Roughing process:

- The tool penetrates the workpiece from the starting position, offset by the oversize, then mills in the longitudinal direction of the slot.
- The oversize is calculated as: (slot width tool diameter) / 2.
- · After downfeed at the end of the slot, milling is performed in the opposite direction. This process is repeated until the programmed milling depth is reached.

Finishing process:

- The control advances the tool at the bottom of the slot on a tangential arc to the outside contour. The tool subsequently climb mills the contour (with M3).
- At the end of the cycle, the tool is retracted in rapid traverse to the setup clearance. If the number of infeeds was odd, the tool returns to the starting position at the level of the setup clearance in the main plane.

SLOT MILLING cycle Fig. 8.5:

Required tool

This cycle requires a center-cut end mill (ISO 1641). The cutter diameter must be smaller than the slot width and larger than half the slot width. The slot must be parallel to an axis of the current coordinate system.

Input data

- SETUP CLEARANCE (A)
- MILLING DEPTH (B): Slot depth. The algebraic sign determines the working direction (a negative value means negative working direction).
- PECKING DEPTH ©
- FEED RATE FOR PECKING: Traversing speed of the tool during penetration
- FIRST SIDE LENGTH (D): Slot length, specify the sign to determine the first milling direction
- SECOND SIDE LENGTH (E): Slot width
- FEED RATE:

Traversing speed of the tool in the machining plane.

Starting point

Before a cycle is called, the tool must be moved to the following starting point with tool radius compensation G40:

- In the tool axis, to setup clearance above the workpiece surface.
- In the machining plane, to the center of the slot (second side length) and, within the slot, offset by the tool radius.



Fig. 8.6: Infeeds and distances for the SLOT MILLING cycle

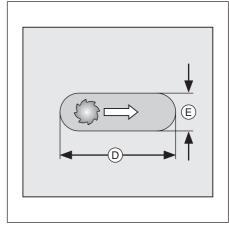


Fig. 8.7: Side lengths of the slot

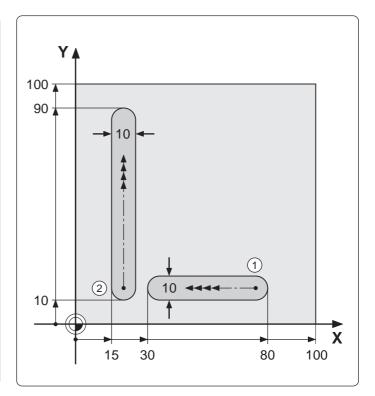
Example: Slot milling

A horizontal slot (50 mm x 10 mm) and a vertical slot (80 mm x 10 mm) are to be milled.

The tool radius in the length direction of the slot is taken into account for the starting position.

Starting position, slot 1:

X = 76 mm Y = 15 mm


Starting position, slot (2):

X = 20 mm
Y = 14 mm
SLOT DEPTH:
Setup clearance:
2 mm
Milling depth:
15 mm
Pecking depth:
5 mm
Feed rate for pecking:
80 mm/min

	1	2
Slot length	50 mm	80 mm
1st milling direction	_	+

Slot width: 10 mm

Feed rate: 120 mm/min

SLOT MILLING cycle in a part program

 %S810I G71 *
 Start of program

 N10 G30 G17 X+0 Y+0 Z-20 *
 Define workpiece blank

 N20 G31 G90 X+100 Y+100 Z+0 *
 Define tool

 N30 G99 T1 L+0 R+4 *
 Define tool

 N40 T1 G17 S2000 *
 Call tool

 N50 G74 P01 -2 P02 -15 P03 -5 P04 80 P05 X-50
 Define slot parallel to X axis

 N60 G00 G40 G90 Z+100 M06 *
 Retract in the infeed axis, insert tool

 N70 X+76 Y+15 M03 *
 Approach starting position, spindle ON

 N80 Z+2 M99 *
 Pre-position in Z to setup clearance, cycle call ①

 N90 G74 P01 -2 P02 -15 P03 -5 P04 80 P05 Y+80
 Define slot parallel to Y axis

 N100 X+20 Y+14 M99 *
 Approach starting position, cycle call ②

 N110 Z+100 M02 *
 Retract in the infeed axis, end of program

 N99999 %S810I G71 *

POCKET MILLING (G75/G76)

Process

The rectangular pocket milling cycle is a roughing cycle, in which

- the tool penetrates the workpiece at the starting position (pocket center)
- the tool subsequently follows the programmed path at the specified feed rate (see figure 8.10)

The cutter begins milling in the positive direction of the axis of the longer side. The cutter always starts in the positive Y direction on square pockets. At the end of the cycle, the tool is retracted to the starting position.

Required tool / limitations

The cycle requires a center-cut end mill (ISO 1641) or pilot drilling at the pocket center. The pocket sides are parallel to the axes of the coordinate system.

Direction of rotation for roughing-out

Clockwise: G75

Counterclockwise: G76

Input data

- SETUP CLEARANCE (A)
- MILLING DEPTH (B)

The algebraic sign determines the working direction (a negative value means negative working direction).

- PECKING DEPTH ©
- FEED RATE FOR PECKING:

Traversing speed of the tool during penetration.

FIRST SIDE LENGTH D:

Pocket length, parallel to the first main axis of the machining plane.

SECOND SIDE LENGTH (E):

Pocket width

The signs of the side lengths are always positive.

FEED RATE:

Traversing speed of the tool in the machining plane.

Calculations

The stepover factor k is calculated as follows:

$$k = K \times R$$

where K is the overlap factor (preset by the machine manufacturer) and R is the cutter radius.

Corner radius

The corner radius is determined by the radius of the milling tool.

Starting point

Before a cycle is called, the tool must be moved to the following starting point with tool radius compensation G40:

- In the tool axis, to setup clearance above the workpiece surface.
- In the machining plane, to the pocket center.

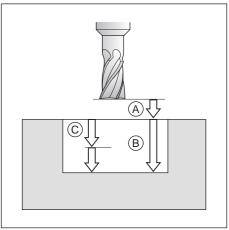


Fig. 8.8: Infeeds and distances for the POCKET MILLING cycle

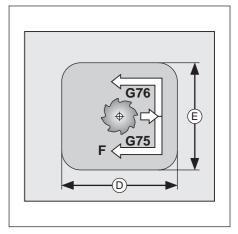


Fig. 8.9: Side lengths of the pocket

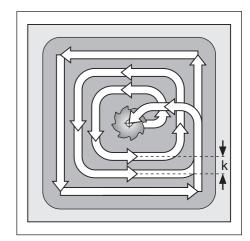
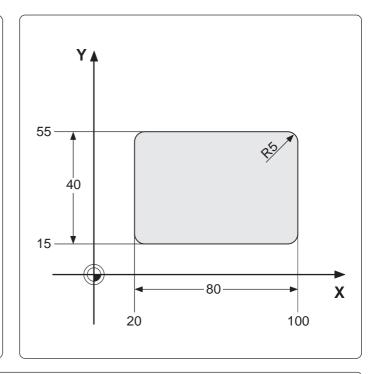



Fig. 8.10: Tool path for roughing-out

Example: Rectangular pocket milling

Pocket center coordinates: X = 60 mmY = 35 mmSetup clearance: 2 mm Milling depth: 10 mm Pecking depth: 4 mm Feed rate for pecking: 80 mm/min First side length: 80 mm Second side length: 40 mm Milling feed rate: 100 mm/min Direction of cutter path:

POCKET MILLING cycle in a part program

%S812I G71 *	Start of program
N10 G30 G17 X+0 Y+0 Z-20 *	Define workpiece blank
N20 G31 G90 X+110 Y+100 Z+0 *	
N30 G99 T1 L+0 R+5 *	Define tool
N40 T1 G17 S2000 *	Call tool
N50 G76 P01 –2 P02 –10 P03 –4 P04 80 P05 X+80	
P06 Y+40 P07 100 *	
N60 G00 G40 G90 Z+100 M06 *	Retract in the infeed axis, insert tool
	Approach the starting position (center of pocket), spindle ON
N80 Z+2 M99 *	
N90 Z+100 M02 *	Retract in the infeed axis, end of program
N99999 %S812I G71 *	

CIRCULAR POCKET MILLING (G77/G78)

Process

- Circular pocket milling is a roughing cycle in which the tool penetrates the workpiece from the starting position (pocket center).
- The cutter subsequently follows a spiral path (shown in figure 8.11) at the programmed feed rate. The stepover factor is determined by the value k (see G75/G76 POCKET MILLING, Calculations).
- The process is repeated until the programmed milling depth is reached.
- At the end of the cycle, the tool is retracted to the starting position.

Required tool

The cycle requires a center-cut end mill (ISO 1641), or pilot drilling at the pocket center.

Direction of rotation for roughing-out

Clockwise: G77

Counterclockwise: G78

Input data

- SETUP CLEARANCE (A)
- MILLING DEPTH B: pocket DEPTH. The algebraic sign determines the working direction (a negative sign means negative working direction).
- PECKING DEPTH ©
- FEED RATE FOR PECKING: Traversing speed of the tool during penetration
- CIRCLE RADIUS (R): Radius of the circular pocket
- FEED RATE:

Traversing speed of the tool in the machining plane

Starting point

Before a cycle is called, the tool must be moved to the following starting point with tool radius compensation G40:

- In the tool axis, to setup clearance above the workpiece surface.
- In the machining plane, to the pocket center.

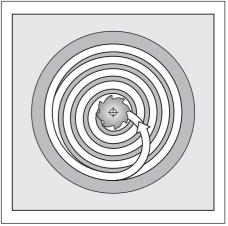
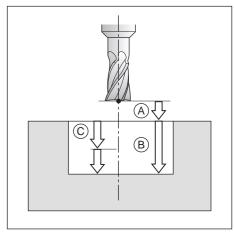



Fig. 8.11: Cutter path for roughing-out

Distances and infeeds for Fig. 8.12: CIRCULAR POCKET MILLING

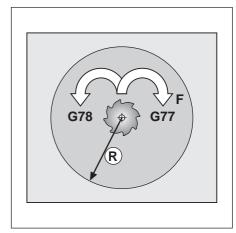


Fig. 8.13: Direction of the cutter path

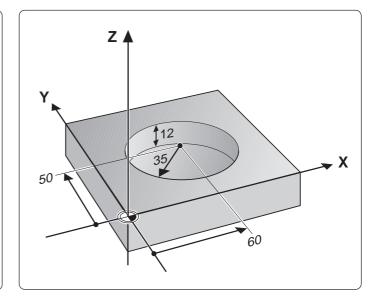
Example: Milling a circular pocket

Pocket center coordinates:

X = 60 mm Y = 50 mm

Setup clearance: 2 mm

Milling depth: 12 mm


Pecking depth: 6 mm

Feed rate for pecking: 80 mm/min

Circle radius: 35 mm

Milling feed rate: 100 mm/min

Direction of the cutter path: -

CIRCULAR POCKET cycle in a part program

%S814I G71 *	Start of program
N10 G30 G17 X+0 Y+0 Z-20 *	
N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+4 *	Define tool
N40 T1 G17 S2000 *	Call tool
N50 G77 P01 –2 P02 –12 P03 –6 P04 80 P05 35	
P06 100 *	Define circular pocket milling cycle
N60 G00 G40 G90 Z+100 M06 *	Retract in the infeed axis, insert tool
N70 X+60 Y+50 M03 *	Approach the starting position (center of pocket), spindle ON
N80 Z+2 M99 *	Pre-position in Z to setup clearance, cycle call
N90 Z+100 M02 *	Retract in the infeed axis, end of program
N99999 %S814I G71 *	

8.3 SL Cycles (Group I)

SL cycles are highly efficient cycles that allow machining of any contour. These cycles have the following characteristics:

- A contour can be composed of several overlapping subcontours.
 Islands or pockets can form a subcontour.
- The subcontours are defined in subprograms.
- The control automatically superimposes the subcontours and calculates the points of intersection formed by overlapping.

The term **SL** is derived from the characteristic **S**ubcontour **L**ist of Cycle G37 CONTOUR GEOMETRY. Since this is purely a geometry cycle, no cutting data or feed values are defined.

The machining data are specified in the following cycles:

- PILOT DRILLING (G56)
- ROUGH-OUT (G57)
- CONTOUR MILLING (G58/G59)

The SL cycles of group II offer further, contour-oriented machining processes and are described later.

Each subprogram defines whether G41 or G42 radius compensation applies. The sequence of points determines the direction of rotation in which the contour is machined. The control infers from these data whether the specific subprogram describes a pocket or an island:

- The control recognizes a pocket if the tool path lies inside the contour
- The control recognizes an island if the tool path lies outside the contour

- The machining of the SL contour is determined by MP 7420.
- It is a good idea to run a graphic simulation before executing a program to see whether the contours were correctly defined.
- The memory capacity for programming an SL cycle is limited. For example, you can program 128 straight line blocks in one SL cycle.
- All coordinate transformations are allowed in programming the subcontours.
- Any words starting with F or M in the subprograms for the subcontours are ignored.

For easier familiarization, the following examples begin with only the rough-out cycle and then proceed progressively to the full range of functions provided by this group of cycles.

Programming parallel axes

Machining operations can also be programmed in parallel axes as SL cycles. (In this case, graphic simulation is not available.) The parallel axes must lie in the machining plane.

Input data

Parallel axes are programmed in the first coordinate block (positioning block, I,J,K block) of the first subprogram called in Cycle G37 CONTOUR GEOMETRY. Coordinate axes entered subsequently will be ignored.

8.3 SL Cycles (Group I)

CONTOUR GEOMETRY (G37)

Application

All subprograms that are superimposed to define the contour are listed in Cycle G37 CONTOUR GEOMETRY.

Input data

Enter the LABEL numbers of the subprograms. Up to 12 label numbers can be defined.

Activation

G37 becomes effective as soon as it is defined.

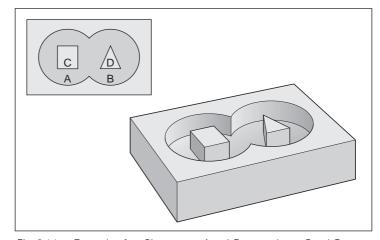


Fig. 8.14: Example of an SL contour. *A* and *B* are pockets, *C* and *D* are islands

Example:

ROUGH-OUT (G57)

The ROUGH-OUT cycle specifies cutting path and partitioning.

Sequence

- The control positions the tool in the tool axis over the first infeed point, taking the finishing allowance into account.
- The tool then penetrates the workpiece at the programmed feed rate for pecking.

Milling the contour:

- The tool mills the first subcontour at the specified feed rate, taking the finishing allowance into account.
- As soon as the tool returns to the infeed point, it is advanced to the next pecking depth.

This process is repeated until the programmed milling depth is reached.

· Further subcontours are milled in the same manner.

Roughing-out pockets:

- After milling the contour the pocket is roughed-out. The stepover is defined by the tool radius. Islands are jumped over.
- If required, pockets can be cleared with several downfeeds.
- At the end of the cycle, the tool is retracted to the setup clearance.

Required tool

The cycle requires a center-cut end mill (ISO 1641) if the pocket is not separately pilot drilled or if the tool must repeatedly jump over contours.

Input data

- SETUP CLEARANCE (A)
- MILLING DEPTH (B)

The algebraic sign determines the working direction (a negative value means negative working direction).

- PECKING DEPTH ©
- FEED RATE FOR PECKING:

Traversing speed of the tool during penetration

FINISHING ALLOWANCE D:

Allowance in the machining plane (positive value)

ROUGH-OUT ANGLE @:

Feed direction for roughing-out.

The rough-out angle is relative to the angle reference axis and can be set, so that the resulting cuts are as long as possible with few cutting movements

FEED RATE:

Traversing speed of the tool in the machining plane

The machine parameters determine whether

- the contour is milled first and then surface machined, or vice versa
- the contour is milled conventionally or by climb cutting
- all pockets are roughed-out first and then contour-milled over all infeeds, or whether
- contour milling and roughing-out are performed mutually for each infeed

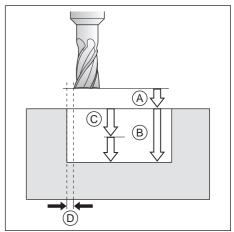


Fig. 8.15: Infeeds and distances of the ROUGH-OUT cycle

Fig. 8.16: Cutter path for roughing-out

Example: Roughing-out a rectangular island

Rectangular island with rounded corners

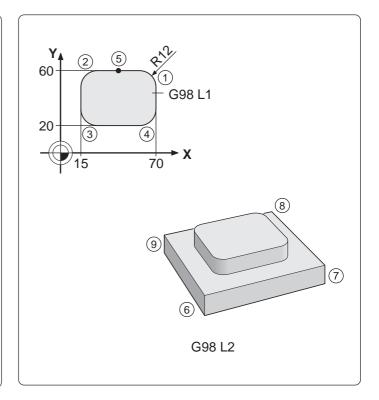
Tool: center-cut end mill (ISO 1641), radius 5 mm

Coordinates of the island corners:

Χ 70 mm (1) 60 mm 15 mm 60 mm 2 <u>3</u> 15 mm 20 mm 20 mm 70 mm (4)

Coordinates of the auxiliary pocket:

Χ -5 mm -5 mm 105 mm -5 mm 7 105 mm 8 105 mm –5 mm 105 mm


Starting point for machining:

(5) X = 40 mm Y = 60 mm

Setup clearance: 2 mm Milling depth: 15 mm Pecking depth: 8 mm Feed rate for pecking: 100 mm/min

Finishing allowance: 0 Rough-out angle: 0°

Milling feed rate: 500 mm/min

ROUGH-OUT cycle in a part program

%S818I G71 *Start of program N10 G30 G17 X+0 Y+0 Z-20 * Define workpiece blank N20 G31 X+100 Y+100 Z+0 *

N30 G99 T1 L+0 R+3 * Define tool

N40 T1 G17 S2500 * Call tool elements are described in subprograms 2 and 1

N60 G57 P01 -2 P02 -15 P03 -8 P04 100 P05 +0

P06 +0 P07 500 * Cycle definition ROUGH-OUT N70 G00 G40 G90 Z+100 M06 * Retract in the infeed axis, insert tool N80 X+40 Y+50 M03 * Pre-position in X/Y, spindle ON

N90 Z+2 M99 *Pre-position in Z to setup clearance, cycle call

N100 Z+100 M02 *

N110 G98 L1 * Subprogram 1: Geometry of the island N120 G01 G42 X+40 Y+60 *

N130 X+15 3 (radius compensation G42 and machining in counterclockwise

direction: the contour element is an island)

N150 Y+20 *

N160 G25 R12 *

N170 X+70 *

N180 G25 R12 *

N190 Y+60 *

N200 G25 R12 *

N210 X+40 *

N220 G98 L0 *

N230 G98 L2 *

N240 G01 G41 X-5 Y-5 * N250 X+105 *

N260 Y+105 *

N270 X-5 *

N280 Y-5 *

N290 G98 L0 *

N99999 %S818I G71 *

Subprogram 2:

Geometry of the auxiliary pocket: External boundary of the area to

be machined

(radius compensation G41 and machining in counterclockwise

direction: the contour element is a pocket)

8.3 SL Cycles (Group I)

Overlapping contours

Pockets and islands can also be overlapped to form a new contour. The area of a pocket can thus be enlarged by another pocket or reduced by an island.

Starting position

Machining begins at the starting position of the first pocket listed in Cycle G37 CONTOUR GEOMETRY. The starting position should be located as far as possible from the superimposed contours.

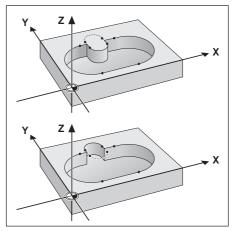


Fig. 8.17: Examples of overlapping contours

Example: Overlapping pockets

The machining process starts with the first contour label defined in block 6. The first pocket must begin outside the second pocket.

Inside machining with a center-cut end mill (ISO 1641), tool radius 3 mm

Coordinates of the circle centers:

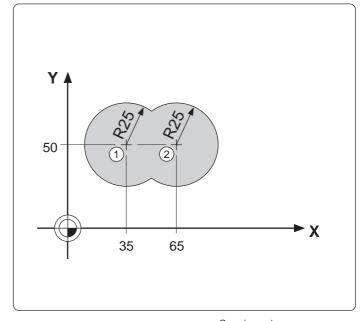
(1) X = 35 mm Y = 50 mm(2) X = 65 mm Y = 50 mm

Circle radii

R = 25 mm

Setup clearance: 2 mm

Milling depth: 10 mm


Pecking depth: 5 mm

Feed rate for pecking: 500 mm/min

Finishing allowance: 0

Rough-out angle: 0

Milling feed rate: 500 mm/min

Continued on next page...

8.3 SL Cycles (Group I)

```
Cycle in a part program
%S820I G71 * ...... Start of program
N10 G30 G17 X+0 Y+0 Z-20 * ...... Define workpiece blank
N20 G31 X+100 Y+100 Z+0 *
N30 G99 T1 L+0 R+3 * ..... Define tool
elements are described in subprograms 1 and 2
N60 G57 P01 -2 P02 -15 P03 -8 P04 100 P05 +0
P06 +0 P07 500 * ...... Cycle definition ROUGH-OUT
N70 G00 G40 G90 Z+100 M06 * ...... Retract in the infeed axis, insert tool
N80 X+50 Y+50 M03 * ...... Pre-position in X/Y, spindle ON
N110 G98 L1 *
N140 G98 L0 *
N150 G98 L2 *
N180 G98 L0 *
N99999 %S820I G71 *
```

Subprograms: Overlapping pockets

Pocket elements A and B overlap.

The control automatically calculates the points of intersection S_1 and S_2 (they do not have to be programmed). The pockets are programmed as full circles.

```
N110
      G98 L1 *
      G01 G41 X+10 Y+50 *
N120
                                          Left pocket
N130
      I+35 J+50 G03 X+10 Y+50 *
N140
      G98 L0 *
N150
      G98 L2 *
N160
      G01 G41 X+90 Y+50 *
N170
      I+65 J+50 G03 X+90 Y+50 *
                                           Right pocket
N180
       G98 L0 *
N99999 % S820I G71 *
```

Depending on the control setup (machine parameters), machining starts either with the outline or the surface:

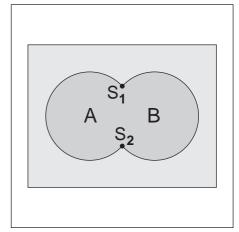


Fig. 8.18: Points of intersection S_1 and S_2 of pockets A and B

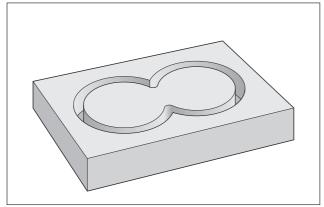


Fig. 8.19: Outline is machined first

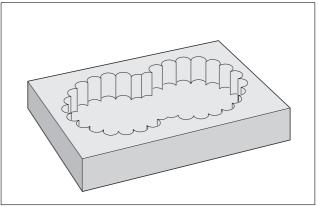


Fig. 8.20: Surface is machined first

8.3 SL Cycles (Group I)

Area of inclusion

Both surfaces A and B are to be machined, including the mutually overlapped area.

- A and B must be pockets.
- The first pocket (in Cycle G37) must start outside the second pocket.

```
N110
       G98 L1 *
N120
       G01 G41 X+10 Y+50 *
N130
       I+35 J+50 G03 X+10 Y+50 *
N140
       G98 L0 *
N150
       G98 L2 *
N160
       G01 G41 X+90 Y+50 *
N170
       I+65 J+50 G03 X+50 Y+50 *
N180
       G98 L0 *
```

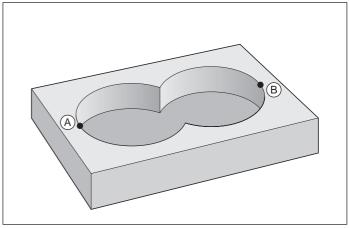


Fig. 8.21: Overlapping pockets: area of inclusion

Area of exclusion

Surface A is to be machined without the portion overlapped by B.

- A must be a pocket and B an island.
- A must start outside of B.

```
N110
       G98 L1 *
N120
       G01 G41 X+10 Y+50 *
N130
       I+35 J+50 G03 X+10 Y+50 *
       G98 L0 *
N140
N150
       G98 L2 *
       G01 G42 X+90 Y+50 *
N160
N170
       I+65 J+50 G03 X+90 Y+50 *
N180
       G98 L0 *
```

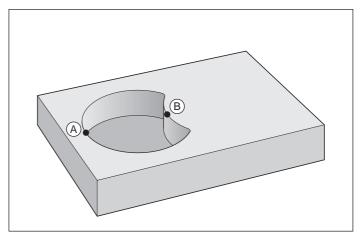


Fig. 8.22: Overlapping pockets: area of exclusion

Area of intersection

Only the area overlapped by both A and B is to be machined.

- A and B must be pockets.
- A must start inside B.

```
G98 L1 *
N110
N120
       G01 G41 X+60 Y+50 *
N130
       I+35 J+50 G03 X+60 Y+50 *
       G98 L0 *
N140
N150
       G98 L2 *
N160
       G01 G41 X+90 Y+50 *
N170
       I+65 J+50 G03 X+90 Y+50 *
       G98 L0 *
N180
```

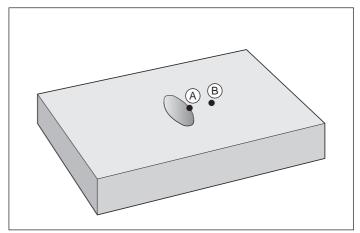


Fig. 8.23: Overlapping pockets: area of intersection

The subprograms are used in the main program on page 8-22.

8.3 SL Cycles (Group I)

Subprogram: Overlapping islands

An island always requires a pocket as an additional boundary (here, G98 L1). A pocket can also reduce more than one island surface. The starting point of this pocket must be within the first island. The starting points of the remaining intersecting island contours must be outside the pocket.

```
%S822I G71 *
       G30 G17 X+0 Y+0 Z-20 *
N10
N20
       G31 X+100 Y+100 Z+0 *
N30
       G99 T1 L+0 R+2.5 *
N40
       T1 G17 S2500
N50
       G37 P01 2 P02 3 P03 1 *
       G57 P01 -2 P02 -10 P03 -5 P04 100
N60
       P05 +0 P06 +0 P07 500 *
N70
       G00 G40 G90 Z+100 M06 *
N80
       X+50 Y+50 M03 *
N90
       Z+2 M99 *
N100
       Z+100 M02 *
N110
       G98 L1 *
N120
       G01 G41 X+5 Y+5 *
N130
       X+95 *
       Y+95 *
N140
N150
       X+5 *
       Y+5 *
N160
N170
       G98 L0 *
N180
       G98 L2 *
N210
       G98 L0 *
N220
       G98 L3 *
      G98 L0 *
N250
N99999 %S822I G71 *
```

Area of inclusion

Elements A and B are to be left unmachined, including the mutually overlapped surface.

- A and B must be islands.
- The first island must start outside the second island.

```
N180
       G98 L2 *
       G01 G42 X+10 Y+50 *
N190
N200
       I+35 Y+50 G03 X+10 Y+50 *
N210
      G98 L0 *
N220
       G98 L3 *
N230
      G01 G42 X+90 Y+50 *
N240
      I+65 J+50 G03 X+90 Y+50 *
N250
      G98 L0 *
N99999 % S822 I G71
```

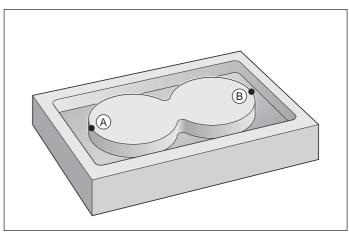


Fig. 8.24: Overlapping islands: area of inclusion

The subprograms and supplements are entered in the main program on page 8-24.

SL Cycles (Group I)

Area of exclusion

Surface A is to be left unmachined, without the portion overlapped by B.

- A must be an island and B a pocket.
- B must start within A.

```
N180
      G98 L2 *
N190
      G01 G42 X+10 Y+50 *
N200 I+35 J+50 G03 X+10 Y+50 *
N210
      G98 L0 *
N220
      G98 L3 *
      G01 G41 X+40 Y+50 *
N230
N240 I+65 J+50 G03 X+40 Y+50 *
N250
      G98 L0 *
N99999 S822I G71*
```

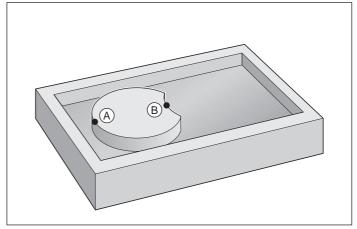


Fig. 8.25: Overlapping islands: area of exclusion

Area of intersection

Only the area overlapped by both A and B is to remain unmachined.

- A and B must be islands.
- A must start within B.

```
N180
      G98 L2 *
N190
      G01 G42 X+60 Y+50 *
      I+35 J+50 G03 X+60 Y+50 *
N200
N210
      G98 L0 *
      G98 L3 *
N220
      G01 G42 X+90 Y+50 *
N230
N240
      I+65 J+50 G03 X+90 Y+50 *
N250
      G98 L0 *
N99999 % S822I G71
```

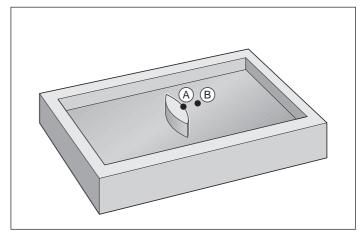
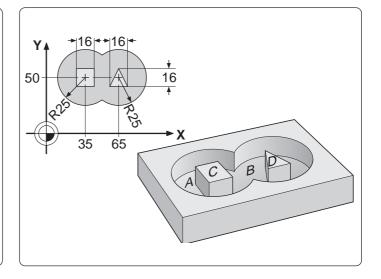


Fig. 8.26: Overlapping islands: area of intersection

8.3 SL Cycles (Group I)

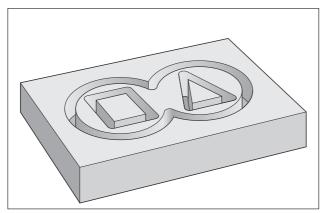

Example: Overlapping pockets and islands

PGM S824l is similar to PGM S820l but adds the islands $\it C$ and $\it D$.

Tool: Center-cut end mill (ISO 1641), radius 3 mm

The contour is composed of the following elements:

Two overlapping pockets (A and B), and two islands within the pockets (C and D).



Cycle in a part program

N300 X+57 Y+42 * N310 G98 L0 * N99999 %S824I G71 *

%S824I G71 * N10 G30 G17 X+0 Y+0 Z-20 * N20 G31 X+100 Y+100 Z+0 * N30 G99 T1 L+0 R+3 * N40 T1 G17 S2500 * N50 G37 P01 1 P02 2 P03 3 P04 4 * N60 G57 P01 -2 P02 -10 P03 -5 P04 100 P05 +2 P06 +0 P07 500 * N70 G00 G40 G90 Z+100 M06 * N80 X+50 Y+50 M03 * N90 Z+2 M99 * N100 Z+100 M02 * N110 G98 L1 * N120 G01 G41 X+10 Y+50 * N130 I+35 J+50 G03 X+10 Y+50 * N140 G98 L0 * N150 G98 L2 * N160 G01 G41 X+90 Y+50 * N170 I+65 J+50 G03 X+90 Y+50 * N180 G98 L0 * N190 G98 L3 * N200 G01 G41 X+27 Y+42 * N210 Y+58 * N220 X+43 * N230 Y+42 * N240 X+27 * N250 G98 L0 * N260 G98 L4 * N270 G01 G42 X+57 Y+42 * N280 X+73 * N290 X+65 Y+58 *

SL Cycles (Group I)

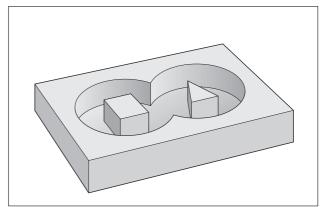


Fig. 8.28: Finished workpiece

PILOT DRILLING (G56)

This cycle performs pilot drilling of holes for cutter infeed at the starting points of the subcontours. With SL contours consisting of several overlapping pockets and islands, the cutter infeed point is the starting point of the first subcontour:


- The tool is positioned at setup clearance over the first infeed point.
- The drilling sequence is identical to fixed Cycle G83 PECKING.
- The tool is then positioned above the second infeed point, and the drilling process is repeated.

Input data

- SETUP CLEARANCE
- TOTAL HOLE DEPTH
- PECKING DEPTH
- DWELL TIME
- FEED RATE

identical to Cycle G83 **PECKING**

• FINISHING ALLOWANCE (D) Allowed material for the drilling operation (see figure 8.30). The sum of the tool radius and the finishing allowance should be the same for pilot drilling as for roughing out.

Example of cutter infeed points Fig. 8.29: for PECKING

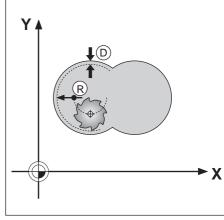


Fig. 8.30: Finishing allowance

CONTOUR MILLING (G58/G59)

The CONTOUR MILLING cycles are used to finish-mill the contour pocket. The cycles can also be used generally for milling contours.

Sequence

- The tool is positioned at setup clearance over the first starting point.
- Moving at the programmed feed rate, the tool then penetrates to the first pecking depth.
- Upon reaching the first pecking depth, the tool mills the first contour at the programmed feed rate in the specified direction of rotation.
- At the infeed point, the control advances the tool to the next pecking

This process is repeated until the programmed milling depth is reached. The remaining subcontours are milled in the same manner.

Required tool

The cycle requires a center-cut end mill (ISO 1641).

Direction of rotation during contour milling

Clockwise: G58

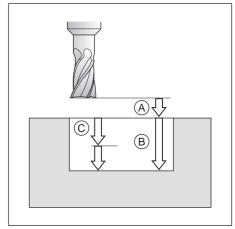
• For M3: up-cut milling for pocket and island

Counterclockwise: G59

• For M3: climb milling for pocket and island

Input data

- SETUP CLEARANCE (A)
- MILLING DEPTH ®


The algebraic sign determines the working direction (negative sign means negative working direction).

- PECKING DEPTH ©
- FEED RATE FOR PECKING:

Traversing speed of the tool during penetration

FEED RATE:

Traversing speed of the tool in the machining plane

Infeeds and distances for **CONTOUR MILLING**

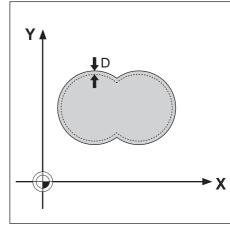


Fig. 8.32: Finishing allowance

SL Cycles (Group I)

The following scheme illustrates the application of the cycles PILOT DRILLING, ROUGH-OUT and CONTOUR MILLING in part programming.

1. List of contour subprograms

No call

2. Drilling

Define and call the drilling tool G56 Pre-positioning Cycle call

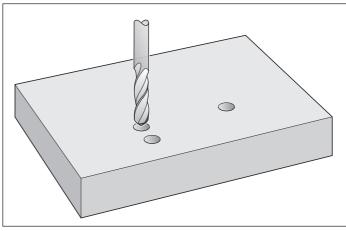


Fig. 8.33: PILOT DRILLING cycle

3. Rough-out

Define and call rough milling tool G57 Pre-positioning Cycle call

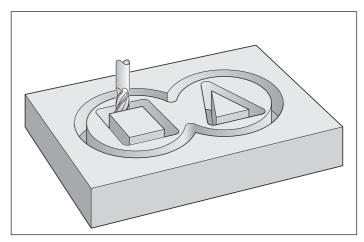


Fig. 8.34: ROUGH-OUT cycle

4. Finishing

Define and call finish milling tool G58/G59 Pre-positioning Cycle call

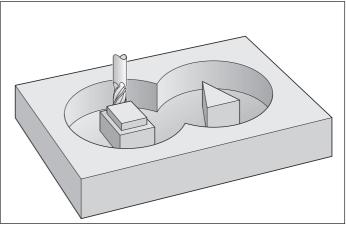
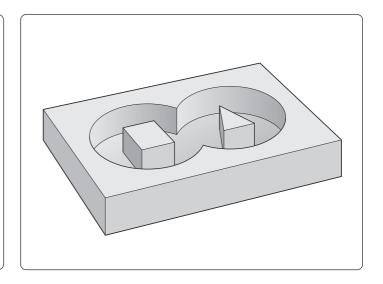


Fig. 8.35: CONTOUR MILLING cycle

5. Contour subprograms

M02 * Subprograms for the subcontours


Example: Overlapping pockets with islands

Inside machining with pilot drilling, roughing-out and finishing.

PGM S829l is based on S824l:

The main program section is expanded by the cycle definitions and calls for pilot drilling and finishing.

The contour subprograms 1 to 4 are identical to the ones in PGM S824l (see page 8-26) and are to be added after block N300.

%S829I G71 *	Start of program
N10 G30 G17 X+0 Y+0 Z-20 *	Define workpiece blank
N20 G31 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+2.5 *	Tool definition: drill bit
N40 G99 T2 L+0 R+3 *	Tool definition: roughing mill
N50 G99 T3 L+0 R+2.5 *	
N60 L10,0 *	
N70 G38 M06 *	Program STOP
N80 T1 G17 S2500 *	Tool call: drill bit
N90 G37 P01 1 P02 2 P03 3 P04 4 *	
N100 G56 P01 –2 P02 –10 P03 –5 P04 500 P05 +2	* Cycle definition: Pilot Drilling
N110 Z+2 M03 *	0
N120 G79 *	Cycle call: Pilot Drilling
N130 L10,0 * N140 G38 M06 *	Tool shange
N150 T2 G17 S1750 *	
N160 G57 P01 –2 P02 –10 P03 –5 P04 100 P05+2	Tool can. Toughing min
P06+0 P07 500 *	
N170 Z+2 M03 *	Cycle definition. Hough out
N180 G79 *	Cycle call: Rough-Out
N190 L10,0 *	
N200 G38 M06 *	Tool change
N210 T3 G17 S2500 *	Tool call: finishing mill
N220 G58 P01 -2 P02 -10 P03 -10 P04 100	
P05 500 *	Cycle definition: Contour Milling
N230 Z+2 M03 *	
N240 G79 *	Cycle call: Contour Milling
N250 Z+100 M02 *	
N260 G98 L10 *	Subprogram for tool change
N270 T0 G17 *	
N280 G00 G40 G90 Z+100 *	
N290 X-20 Y-20 *	
N300 G98 L0 *	
From block N310: Add subprograms on page 8-26	
N99999 %S829I G71 *	
1000000 7000201 071	

8.4 SL Cycles (Group II)

The SL cycles of group II allow *contour-oriented* machining of complex contours and achieve a particularly high degree of surface finish.

These cycles differ from those of group I in the following ways:

- Before the cycle starts, the TNC automatically positions the tool to the setup clearance.
- Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of "inside corners" can be programmed the tool keeps moving to prevent surface blemishes at inside corners (this applies for the outermost pass in Cycles G123 and G124).
- The contour is approached in a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece in a tangential arc (for tool axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.
- MP 7420 is replaced by DIRECTION OF ROTATION Q9.

The machining data (such as milling depth, finishing allowance and setup clearance) are entered as CONTOUR DATA in Cycle G120.

There are four cycles for contour-oriented machining:

- PILOT DRILLING (G121)
- ROUGH-OUT (G122)
- FLOOR FINISHING (G123)
- SIDE FINISHING (G124)

CONTOUR DATA (G120)

Application

Machining data for the subprograms describing the subcontours are entered in Cycle G120. These data are valid for Cycles G121 to G124.

Input data

• MILLING DEPTH Q1

Distance between workpiece surface and pocket floor. The algebraic sign determines the working direction (negative sign means negative working direction).

PATH OVERLAP FACTOR Q2

Q2 * tool radius = stepover factor k

ALLOWANCE FOR SIDE Q3

Finishing allowance in the working plane

ALLOWANCE FOR FLOOR Q4

Finishing allowance in the tool axis

WORKPIECE SURFACE COORDINATE Q5

Absolute coordinate of the workpiece surface referenced to the workpiece datum

SETUP CLEARANCE Q6

Distance between the tool tip and the workpiece surface

CLEARANCE HEIGHT Q7

Absolute height at which the tool cannot collide with the workpiece (for intermediate positioning and retraction at the end of the cycle).

INSIDE CORNER RADIUS Q8 Inside "corner" rounding radius

DIRECTION OF ROTATION Q9

Direction of rotation for pockets: Clockwise (Q9 = -1)

up-cut milling for pocket and island

Counterclockwise (Q9 = +1)

climb milling for pocket and island

Activation

G120 becomes effective immediately upon definition.

The machining parameters can be checked during a program interruption and overwritten if required.

If the SL cycles are used in Q parameter programs, the cycle parameters Q1 to Q17 cannot be used as program parameters.

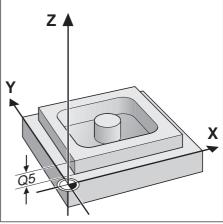


Fig. 8.36: Workpiece surface coordinate Q5

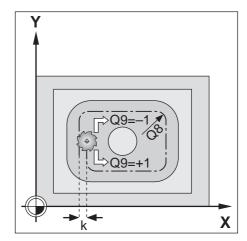


Fig. 8.37: Direction of rotation Q9 and stepover factor k

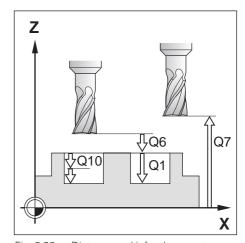


Fig. 8.38: Distance and infeed parameters

PILOT DRILLING (G121)

Application

Cycle G121 is for PILOT DRILLING of the cutter infeed points. It accounts for the ALLOWANCE FOR SIDE and the ALLOWANCE FOR FLOOR as well as the radius of the rough-out tool. The cutter infeed points also serve as starting points for milling.

Sequence

Same as Cycle G83 PECKING.

Input data

- PECKING DEPTH Q10 Dimension by which the tool drills in each infeed (negative sign for negative direction)
- FEED RATE FOR PECKING Q11 Traversing speed of the tool in mm/min during drilling
- ROUGH-OUT TOOL NUMBER Q13 Tool number of the roughing mill

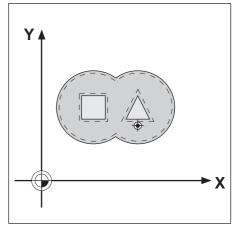


Fig. 8.39: Possible infeed point for PILOT DRILLING

ROUGH-OUT (G122)

Sequence

- The control positions the tool over the cutter infeed point
- The ALLOWANCE FOR SIDE is taken into account.
- After reaching the first pecking depth, the tool mills the contour in an outward direction at the programmed feed rate Q12.
- First the island contours (C and D in figure 8.40) are rough-milled until the pocket contour (A, B) is approached.
- Then the pocket contour is rough-milled and the tool is retracted to the CLEARANCE HEIGHT.

Input data

- PECKING DEPTH Q10
 Dimension by which the tool is plunged in each infeed (negative sign for negative direction)
- FEED RATE FOR PECKING Q11
 Traversing speed of the tool in mm/min during penetration
- FEED RATE FOR MILLING Q12
 Traversing speed of the tool in mm/min while milling

The cycle requires a center-cut end mill (ISO 1641).

FLOOR FINISHING (G123)

Sequence

Cycle G123 FLOOR FINISHING functions similar to Cycle G122 ROUGH-OUT. The tool approaches the machining plane in a vertically tangential arc.

Input data

- FEED RATE FOR PECKING Q11
 Traversing speed of the tool during penetration
- FEED RATE FOR MILLING Q12
 Traversing speed of the tool in the machining plane

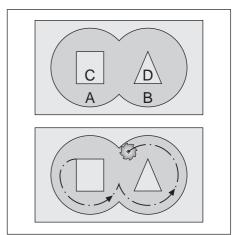


Fig. 8.40: Cutter path for ROUGH-OUT.

A and B are pockets, C and D are islands

SIDE FINISHING (G124)

Sequence

The subcontours are approached and departed on a tangential arc. Each subcontour is finish-milled separately.

Input data

• DIRECTION OF ROTATION Q9 Direction of the cutter path

Clockwise: +1 Counterclockwise: -1

PECKING DEPTH Q10

Dimension by which the tool plunges in each infeed

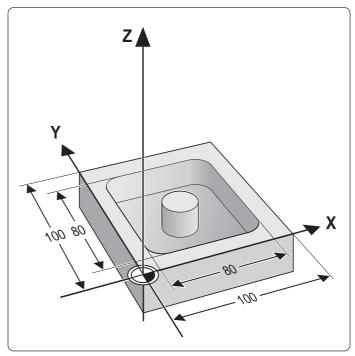
 FEED RATE FOR PECKING Q11 Traversing speed during penetration

FEED RATE FOR MILLING Q12

Traversing speed for milling ALLOWANCE FOR SIDE Q14

Enter the allowed material for several finish-milling operations. If Q14 = 0 is entered, the remaining finishing allowance will be cleared.

Prerequisites


Input parameters:

• The sum of ALLOWANCE FOR SIDE (Q14) and the radius of the finish mill must be smaller than sum of ALLOWANCE FOR SIDE (Q3, Cycle G120) and the radius of the roughing mill. This calculation also holds if G124 is run without having roughed out with G122, in which case 0 should be used for the radius of the roughing mill.

Example: Rectangular pocket with round island

Milling depth Q1: -15 mm Path overlap Q2: 1 Allowance side Q3: 1 mm Allowance depth Q4: 1 mm Top surface of workpiece Q5: 0 Setup clearance Q6: 2 mm Clearance height Q7: 50 Rounding radius Q8: 10 mm Direction of rotation Q9: +1

Subcontours are defined in subprograms 1 and 2.

Continued on next page...

Part program	
%S835I G71 * N10 G30 G17 X+0 Y+0 Z-20 * N20 G31 G90 X+100 Y+100 Z+0 *	
N30 G99 T1 L+0 R+3 * N40 G99 T2 L+0 R+2.5 * N50 G99 T3 L+0 R+2.5 *	Define tools
N60 G37 P01 1 P02 2 * N70 G120 Q1=–15 Q2=1 Q3=+1 Q4=+1 Q5=+0	
Q6=-2 Q7=+50 Q8=+10 Q9=+1 *	,
N80 L10,0 * N90 T1 G17 S2500 *	
N100 G121 Q10=–10 Q11=100 Q13=2 * N110 G79 M3 *	
N120 L10,0 * N130 T2 G17 S1500 *	
N140 G122 Q10=-10 Q11=100 Q12=500 * N150 G79 M3 *	
N160 L10,0 *	
N180 G123 Q11=80 Q12=250 * N190 G79 M3 * N200 G124 Q9=+1 Q10=-5 Q11=100 Q12=240	
Q14=+0 *	
N230 G98 L10 * N240 T0 G17 * N250 G00 G40 G90 Z+100 * N260 X-20 Y-20 M6 * N270 G98 L0 *	Subprogram for tool change
N280 G98 L1 *	Contour subprogram: Rectangular Pocket
N360 G98 L2 * N370 G01 G41 X+35 Y+50 * N380 I+50 J+50 * N390 G02 X+35 Y+50 * N400 G98 L0 * N99999 %S835I G71 *	Contour subprogram: Circular Island

CONTOUR TRAIN (G125)

Sequence

This cycle facilitates the machining of open contours (the starting point of the contour is not the same as its end point).

G125 CONTOUR TRAIN offers considerable advantages over machining an open contour using positioning blocks:

- The control monitors the operation to prevent undercuts and surface blemishes. It is recommended that you run a graphic simulation of the contour before execution.
- If the radius of the selected tool is too large, the corners of the contour may have to be reworked.
- The contour can be machined throughout by up-cut or by climb milling.
- The tool can be traversed back and forth for milling in several infeeds. This results in faster machining.
- Allowance values can be entered in order to perform repeated roughmilling and finish milling operations.

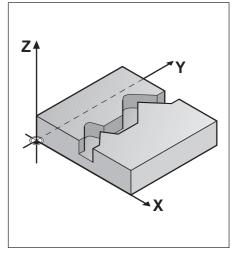


Fig. 8.41: Example of an open contour

G125 CONTOUR TRAIN should not be used for closed contours. With closed contours, the starting point and end point of the contour must not be located in a contour corner.

Input data

• MILLING DEPTH Q1

Distance between workpiece surface and contour floor. The sign determines the working direction (a negative sign means negative working direction).

- ALLOWANCE FOR SIDE Q3 Finishing allowance in the machining plane
- WORKPIECE SURFACE COORDINATE Q5 Absolute coordinate of the workpiece surface referenced to the workpiece datum
- CLEARANCE HEIGHT Q7

Absolute height at which the tool cannot collide with the workpiece. Position for tool retraction at the end of the cycle.

 PECKING DEPTH Q10 Dimension by which the tool is plunged for each infeed

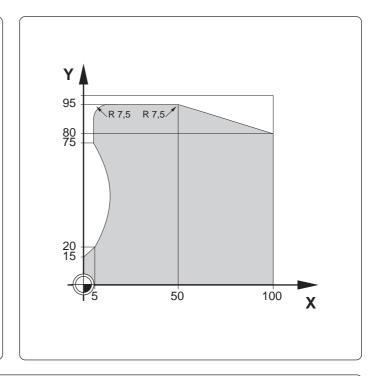
FEED RATE FOR PECKING Q11 Traversing speed of the tool in the tool axis

 FEED RATE FOR MILLING Q12 Traversing speed of the tool in the machining plane

CLIMB OR UP-CUT Q15

Climb milling: input value = +1Up-cut milling: input value = -1

To enable climb milling and conventional up-cut milling alternately in


several infeeds: input value = 0

- If Cycle G125 CONTOUR TRAIN is used, only the first label from Cycle G37 CONTOUR GEOMETRY will be processed.
- Each subprogram can contain up to 128 contour elements.
- Cycle G120 CONTOUR DATA is not required.

Example

Input parameters in Cycle G125: Milling depth Q1: -12 mm Allowance for side Q3: 0 Top surface of workpiece Q5: 0 Clearance height Q7: 10 Pecking depth Q10: -2 mm Feed rate for pecking Q11: 100 mm/min 200 mm/min Feed rate for milling Q12: Milling type Q15 (climb milling): +1

Cycle in part program

N150 G25 R7.5 * N160 G01 X+50 * N170 G25 R7.5 * N180 X+100 Y+80 * N190 G98 L0 * N99999 %S837I G71 *

 %S837I G71 *
 Start of program

 N10 G30 G17 X+0 Y+0 Z-20 *
 Define workpiece blank

 N20 G31 G90 X+100 Y+100 Z+0 *
 Define tool

 N30 G99 T1 L+0 R+10 *
 Define tool

 N40 T1 G17 S1500 *
 Call tool

 N50 G37 P01 1 *
 Cycle definition: Contour Geometry

 N60 G125 Q1=-12 Q3=+0 Q5=+0 Q7=+10 Q10=-2
 Cycle definition: Contour Train

 N70 G00 G40 G90 Z+100 M3 *
 Retract in the infeed axis, spindle ON

 N80 G79 *
 Cycle call

 N90 G00 G40 Z+100 M2 *
 Contour subprogram

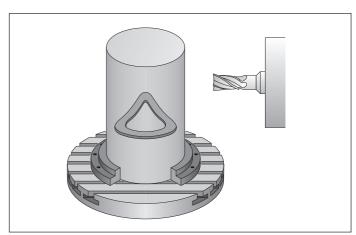
 N110 G91 G41 X+0 Y+15 *
 Contour subprogram

 N120 X+5 Y+20 *
 N130 G06 X+5 Y+75 *

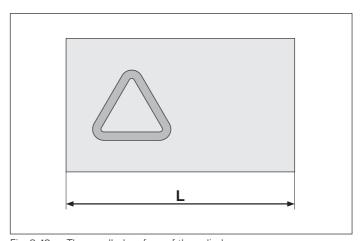
 N140 G01 Y+95 *

CYLINDER SURFACE G127

The machine tool and the TNC must have been prepared by the machine manufacturer for the use of Cycle G127.


Process

This cycle enables you to program a contour in two dimensions and then roll it onto a cylindrical surface for 3D machining.


The contour is described in a subprogram identified in Cycle G37 (CONTOUR GEOM.).

The subprogram contains coordinates in a rotary axis and in its parallel axis. The rotary axis C, for example, has Z as its parallel axis. The path functions G01, G02/G03 with R, G25 are available for programming.

The dimensions in the rotary axis can be entered as desired either in degrees or in mm (inch). You can select the desired dimension type in the cycle definition.

Contour on a cylindrical surface Fig. 8.42:

The unrolled surface of the cylinder: Fig. 8.43: L = Diameter of cylinder * 3.14

G127 CYLINDER SURFACE should not be used for closed contours. With closed contours, the starting point and end point of the contour must not be located in a contour corner.

Input

MILLING DEPTH Q1:

Distance between the cylindrical surface and the floor of the contour.

ALLOWANCE FOR SIDE Q3:

Finishing allowance in the plane of the unrolled cylindrical surface. This allowance is effective in the direction of the radius compensation.

• SETUP CLEARANCE Q6:

Distance between the tool tip and the cylinder surface.

PECKING DEPTH Q10:

Dimension by which the tool advances in each infeed.

• FEED RATE FOR PECKING Q11:

Feed rate for traversing in the tool axis.

• FEED RATE FOR MILLING Q12:

Feed rate for traversing in the working plane.

• RADIUS Q16:

Radius of the cylinder on which the contour is to be machined.

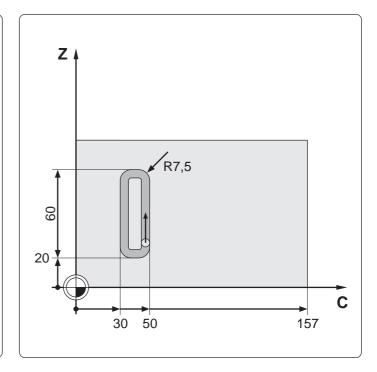
• DIMENSION TYPE (ANG/LIN) Q17:

The dimensions for the rotary axis of the subprogram are given either in degrees (0) or in mm/inch (1).

Prerequisites

- The cycle requires a center-cut end mill (ISO 1641).
- The cylinder must be set up centered on the rotary table.
- The tool axis must be perpendicular to the rotary table. If this is not the case, an error message will result.

SL-Cycles (Group II)


Example:

Rectangular channel on a cylindrical surface

20 mm Channel width Channel height 60 mm Depth 7.5 mm Cylinder diameter 50 mm

Length of programming plane = Circumference of the cylinder: $3.14 \times 50 \text{ mm} = 157 \text{ mm}$

You wish to enter the dimensional data for the rotary axis in mm (Q17 = 1)!


```
Cycle in a part program
%CYLSURF G71*
N10 G30 G18 X+0 Y+0 Z-20*
N20 G31 G90 X+100 Y+100 Z+0*
N30 G99 T1 L+0 R+6*
N40 T1 G18 S100*
   G00 G40 G90 Y+100*
N50
Q1=-7.5 .....;MILLING DEPTH
   Q3=+0 .....;ALLOWANCE FOR SIDE
   Q6=+2 ;SETUP CLEARANCE
   Q10=+4 ....;PECKING DEPTH
   Q11=100 .....;FEED RATE FOR PECKING
   Q12=250 .....;FEED RATE FOR MILLING
   Q16=+25 .....;RADIUS
   Q17=1* ....;DIMENSION TYPE (ANG/LIN)
N70 C+0 M3 * ...... Pre-position on the rotary axis
N80 G79* ..... Call the cycle
N90 G00 Y+200 M2 * ...... Retract, end of main program
N100 G98 L1*
N110 G01 G41 C+40 Z+20 * ..... Start position C 40 mm
N120 C+50Z+20*
N130 G25 R7.5*
N140 G91 Z+60*
N150 G90 G25 R7.5*
N160 G91 C-20*
N170 G90 G25 R7.5*
N180 L Z+20
N190 G25 R7.5*
N200 C+40*
N210 G98 L0 * ..... End of subprogram
N99999 % CYLSURF G71*
```

8.5 Coordinate Transformations

Once a contour has been programmed, it can be positioned on the workpiece at various locations and in different sizes through the use of coordinate transformations. The following cycles are available for this:

- DATUM SHIFT (G53/G54)
- MIRROR IMAGE (G28)
- ROTATION (G73)
- SCALING (G72)

The original contour must be marked in the part program as a subprogram or a program section.

Duration of effect

A coordinate transformation becomes effective as soon as it is defined, and remains in effect until it is changed or cancelled.

Cancellation

Coordinate transformations can be cancelled in the following ways:

- Define cycles for basic behavior with a new value (such as scaling factor 1)
- Execute a miscellaneous function M02 or M30, or an N99999 %... block (depending on machine parameters)
- Select a new program

Fig. 8.44: Examples of coordinate transformations

Coordinate Transformations

DATUM SHIFT (G54)

Application

A datum shift allows machining operations to be repeated at various locations on the workpiece.

Activation

When the DATUM SHIFT cycle is defined, all coordinate data are based on the new datum. The datum shift is shown in the additional status display.

Input data

For a datum shift, you need only enter the coordinates of the new datum (zero point). Absolute values are referenced to the manually set workpiece datum. Incremental values are referenced to the datum which was last valid (this can be a datum which has already been shifted).

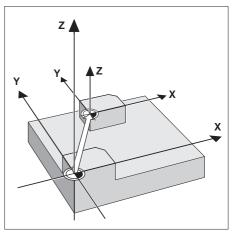


Fig. 8.45: Activation of datum shift

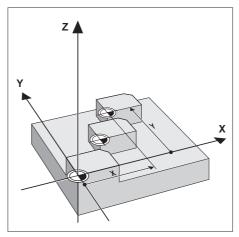


Fig. 8.46: Datum shift, absolute

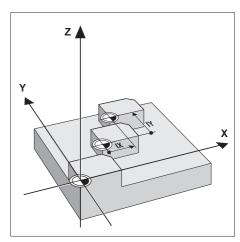


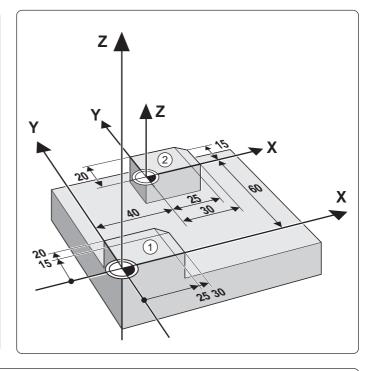
Fig. 8.47: Datum shift, incremental

Cancellation

A datum shift is cancelled by entering the datum shift coordinates X = 0, Y = 0 and Z = 0.

When combining transformations, a datum shift must be programmed before the other transformations.

Graphics


If you program a new workpiece blank after a datum shift, MP 7310 determines whether the workpiece blank is referenced to the current datum or the original datum (MP 7310: see page 11-11). Referencing a new workpiece blank to the current datum enables you to display each part in a program in which several parts are machined.

8.5 Coordinate Transformations

Example: Datum shift

A machining sequence in the form of a subprogram is to be executed twice:

- a) once, referenced to the specified datum
 (1) X+0/Y+0, and
- b) a second time, referenced to the shifted datum ② X+40/Y+60.

Cycle in part program

Coordinate Transformations

Subprogram N110 G98 L1 * N120 X-10 Y-10 M03 * N130 Z+2 * N140 G01 Z-5 F200 * N150 G41 X+0 Y+0 * N160 Y+20 * N170 X+25 * N180 X+30 Y+15 * N190 Y+0 * N200 X+0 * N210 G40 X-10 Y-10 * N220 G00 Z+2 * N230 G98 L0 *

Depending on the transformations, the subprogram is added to the program at the following positions (NC blocks):

	LBL 1	LBL 0
Datum shift	block N110	block N230
Mirror image, rotation, scaling	block N130	block N250

DATUM SHIFT with datum tables (G53)

Application

Datum tables are applied for

- frequently repeating machining sequences at various locations on the
- frequent use of the same datum shift

The datum points from datum tables are only effective with absolute coordinate values.

Within a program, datum points can either be programmed directly in the cycle definition or called from a datum table.

Input

Enter the number of the datum from the datum table or a Q parameter number. If you enter a Q parameter number, the TNC activates the datum number found in the Q parameter.

Cancellation

- Call a datum shift to the coordinates X = 0; Y = 0, etc., from a datum
- Execute the datum shift directly via cycle definition (see also page 8-42).

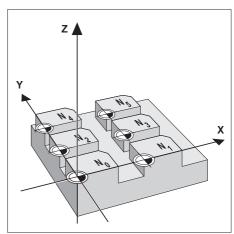
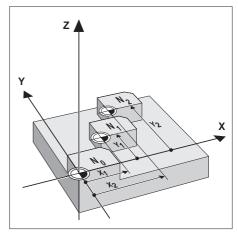
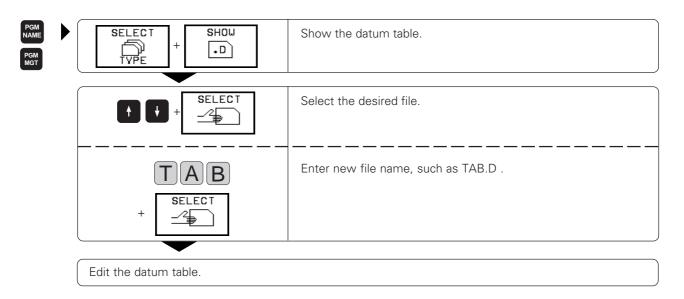



Fig. 8.48: Similar datum shifts



Only absolute datum shifts are Fig. 8.49: possible from a datum table

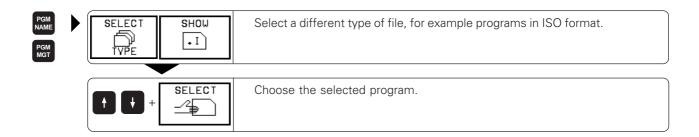
8.5 Coordinate Transformations

Editing a datum table

Datum tables are edited in the PROGRAMMING AND EDITING mode:

The soft keys comprise the following functions for editing:

BEGIN	END	PAGE	PAGE	INSERT	DELETE	NEXT	
TABLE	TABLE	ή		LINE	LINE	LINE	


Function	Soft key
Go to the beginning of datum table	BEG IN TABLE
Go to the end of datum table	END TABLE
Page up	PAGE
Page down	PAGE
Insert line	INSERT LINE
Delete line	DELETE LINE
Enter line, go to beginning of next line	NEXT LINE

- If you are using only one datum table, be sure to activate the correct datum in the program run modes of operation.
- Datums from a datum table can be referenced either to the current datum or to the machine datum. The desired setting is made in MP 7475 (see page 11-14).
- New lines can only be inserted at the end of the file.

To leave a datum table:

8.5 Coordinate Transformations

MIRROR IMAGE (G28)

Application

This cycle allows you to machine the mirror image of a contour in the machining plane.

Activation

The mirror image cycle becomes active immediately upon being defined. The mirrored axis is shown in the additional status display.

- If one axis is mirrored, the machining direction of the tool is reversed (except in fixed cycles).
- If two axes are mirrored, the machining direction remains the same.

The result depends on the location of the datum:

- If the datum is located on the contour to be mirrored, the part simply "flips over."
- If the datum is located outside the contour to be mirrored, the part also "jumps" to another location.

Enter the axes that you wish to mirror. The tool axis cannot be mirrored.

Cancellation

This cycle is cancelled by entering G28 without an axis.

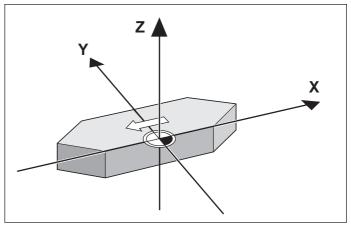


Fig. 8.50: Mirroring a contour

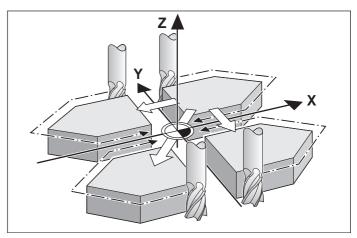
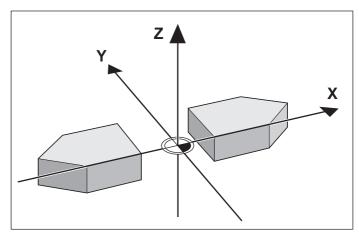
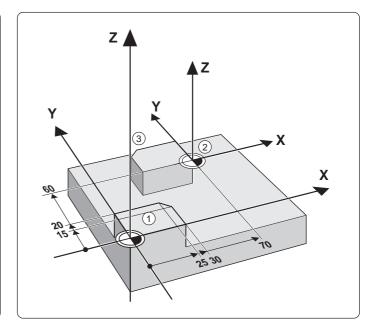



Fig. 8.51: Repeated mirroring, machining direction



Datum located outside the contour to be mirrored Fig. 8.52:

Coordinate Transformations

Example: Mirror image

A program section (subprogram 1) is to be executed once as originally programmed at position X+0/Y+0 ①, and then mirrored once in X ③ at position X+70/Y+60 (2).

MIRROR IMAGE cycle in a part program %S844I G71 * Start of program N10 G30 G17 X+0 Y+0 Z-20 * Define workpiece blank N20 G31 X+100 Y+100 Z+0 * N60 L1,0 * Version 1 unmirrored N70 G54 X+70 Y+60 * Shift datum N100 G28 * Cancel mirroring N110 G54 X+0 Y+0 * Cancel datum shift N120 Z+100 M02 * N130 G98 L1 * Same as subprogram on page 8-45 N250 G98 L0 * N99999 %S844I G71 *

ROTATION (G73)

Application

This cycle enables the coordinate system to be rotated about the active datum in the machining plane within a program.

Activation

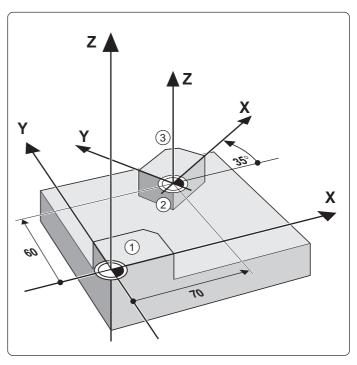
Rotation becomes active as soon as it is defined. This cycle is also effective in the POSITIONING WITH MANUAL INPUT mode.

Reference axis for the rotation angle:

• X/Y plane X axis Y/Z plane Y axis • Z/X plane Z axis

The active rotation angle is displayed in the additional status display.

Input data


The rotation angle is entered in degrees (°). Input range: -360° to +360° (absolute or incremental).

Cancellation

Rotation is cancelled by entering a rotation angle of 0°.

Example: Rotation

A contour (subprogram 1) is to be executed once as originally programmed referenced to the datum X+0/Y+0, and then rotated by 35° and referenced to the position X+70 Y+60.

Continued on next page...

Coordinate Transformations

```
ROTATION cycle in a part program
%S846l G71 * ...... Start of program
N10 G30 G17 X+0 Y+0 Z-20 * ...... Define workpiece blank
N20 G31 X+100 Y+100 Z+0 *
N30 G99 T1 L+0 R+4 * ..... Define tool
N40 T1 G17 S1500 * ...... Call tool
N50 G00 G40 G90 Z+100 * ...... Retract in the infeed axis
N60 L1,0 * ...... Version 1 (not rotated)
N70 G54 X+70 Y+60 *
N80 G73 G90 H+35 *
      N90 L1,0 *
N120 Z+100 M02 3
N130 G98 L1 *
                               Same as subprogram on page 8-45
N250 G98 L0 *
N99999 %S846I G71 *
```

The corresponding subprogram (see page 8-45) is programmed after M2.

SCALING FACTOR (G72)

Application

G72 allows contours to be enlarged or reduced in size within a program, enabling you to program shrinkage and oversize allowances.

Activation

A scaling factor becomes effective as soon as it is defined. The scaling factor can be applied

- in the machining plane, or on all three main axes at the same time (depending on MP 7410)
- to the dimensions in cycles
- to the parallel axes U, V, W

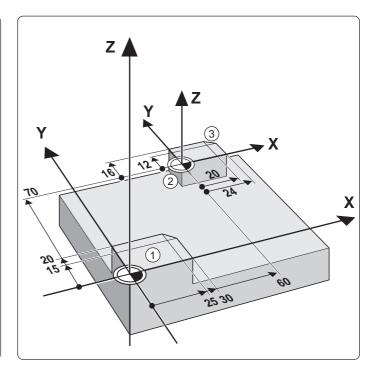
Input data

The cycle is defined by entering the factor *F*. The control then multiplies the coordinates and radii by F (as described under Activation above).

Enlargement: F > 1 (up to 99.999 999) Reduction: F < 1 (down to 0.000 001)

Cancellation

To cancel the scaling factor, enter a scaling factor of 1 in the SCALING FACTOR cycle.


Prerequisite

It is advisable to set the datum to an edge or a corner of the contour before enlarging or reducing the contour.

8.5 Coordinate Transformations

Example: Scaling factor

A contour (subprogram 1) is to be executed as originally programmed at the manually set datum X+0/Y+0, and then referenced to position X+60/Y+70 and executed with a scaling factor of 0.8.

SCALING FACTOR cycle in a part program N20 G31 X+100 Y+100 Z+0 * N30 G99 T1 L+0 R+4 * Define tool N40 T1 G17 S1500 * Call tool N50 G00 G40 G90 Z+100 * Retract in the infeed axis N60 L1,0 * Version 1 (original size) N70 G54 X+70 Y+60 * N80 G72 F0,8 * N110 G54 X+0 Y+0 * Cancel datum shift N120 Z+100 M02 * N130 G98 L1 * Same as subprogram on page 8-45 N250 G98 L0 * N99999 %S847I G71 *

The corresponding subprogram (see page 8-45) is programmed after M2.

8.6 Other Cycles

DWELL TIME (G04)

Application

This cycle causes the execution of the next block within a running program to be delayed by the programmed dwell time.

The dwell time cycle can be used for such purposes as chip breaking.

Activation

This cycle becomes effective as soon as it is defined. Modal conditions such as spindle rotation are not affected.

Input data

The dwell time is entered in seconds after G04 with F. Input range: 0 to 30 000 sec. (approx. 8.3 hours) in increments of 0.001 sec.

Resulting NC block: N135 G04 F3*

PROGRAM CALL (G39)

Application and activation

Routines that are programmed by the user (such as special drilling cycles, curve milling or geometrical modules) can be written as main programs and then called like fixed cycles.

Input data

Enter the file name of the program to be called.

The program is called with

- G79 (separate block) or
- M99 (blockwise) or
- M89 (modally).

Example: Program call

A callable program (program 50) is to be called into a program via a cycle call.

Part program G39 P01 50 "Program 50 is a cycle" G00 G40 X+20 Y+50 M99 Call program 50 Call program 50

8.6 Other Cycles

ORIENTED SPINDLE STOP (G36)

Application

The control can address the machine tool spindle as a 6th axis and rotate it to a given angular position. Oriented spindle stops are required for

- Tool changing systems with a defined tool change position
- Orientation of the transmitter/receiver window of the HEIDENHAIN TS 511 3D touch probe system

Activation

The angle of orientation defined in the cycle is positioned to by entering M19. If M19 is executed without a cycle definition, the machine tool spindle will be oriented to an angle which has been set in the machine parameters.

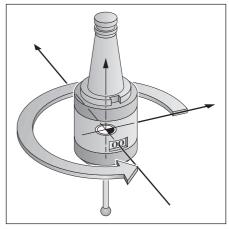


Fig. 8.53: Oriented spindle stop

Apart from Cycle G36, oriented spindle stops can also be programmed in the machine parameters.

Prerequisite

The machine must first be set up for this cycle.

Input data

Angle of orientation ${\cal S}$ (according to the reference axis of the machining plane).

Input range: 0 to 360° Input resolution: 0.1°

Other Cycles

WORKING PLANE (G80)

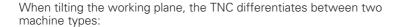
The functions for tilting the working plane are interfaced to the TNC and the machine tool by the machine manufac-

The following additional note applies to the TNC 426:

On some machines with swivel heads/tilting tables, the machine manufacturer determines whether the angles programmed in the cycle are interpreted as coordinates of the tilt axes or as solid angles. Your machine manual provides more detailed information on this subject.

The TNC supports machine tools with swivel heads (the tool is tilted) and/or tilting tables (the workpiece is tilted).

The program is written as usual in a main plane, such as the X/Y plane, but is executed in a plane that is tilted relative to the main plane.


Typical applications:

- Oblique holes
- Contours in an oblique plane

There are two ways to tilt the working plane:

- 3D ROT soft key in the MANUAL OPERATION and ELECTRONIC HANDWHEEL operation modes (see page 2-24)
- Cycle G80 WORKING PLANE in the part program

The tilting functions are coordinate transformations. The transformed tool axis (i.e., as calculated by the TNC) always remains parallel to the actual tool axis (the axis being positioned). The working plane is always perpendicular to the direction of the tool axis.

- Machines with tilting tables
- Machines with swivel heads

Machines with tilting tables:

- You must bring the **workpiece** into the desired position for machining by positioning the tilting table, for example with a G00 block.
- The position of the transformed tool axis **does not change** in relation to the machine-based coordinate system. Thus if you rotate the table and therefore the workpiece—by 90° for example, the coordinate system does not rotate. If you press the Z+ axis direction button in the MANUAL OPERATION mode, the tool moves in Z+ direction.
- In calculating the transformed coordinate system the TNC considers only the mechanically influenced offsets of the particular tilting table (the so-called "translational" components).

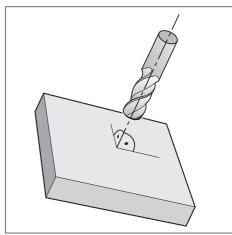


Fig. 8.54: Pre-position the tool perpendicular to the tilted plane

8.6 Other Cycles

Machines with swivel heads:

- You must bring the **tool** into the desired position for machining by positioning the swivel head, for example with a G00 block.
- The position of the transformed tool axis (like the position of the tool) **changes** in relation to the machine-based coordinate system. Thus if you rotate the swivel head—and therefore the tool—in the B axis by +90° for example, the coordinate system **rotates also**. If you press the Z+ axis direction button in the MANUAL OPERATION mode, the tool moves in X+ direction of the machine-based coordinate system.
- In calculating the transformed coordinate system the TNC considers the
 mechanically influenced offsets of the particular swivel head (the socalled "translational" components) and the offsets caused by tilting of
 the tool (3D tool length compensation).

Other Cycles 8.6

Activation

Cycle G80 becomes effective immediately after definition in part programming. If the function TILTING PROGRAM RUN is set to ACTIVE in the MANUAL mode (see page 2-26), the angular value entered in this menu is overwritten by Cycle G80.

Input data

ROTARY AXIS AND TILT ANGLE:

The tilted axes of rotation together with the associated tilt angles.

The axes A, B and C are programmed using soft keys.

Entering an axis of rotation together with the associated tilt angle in Cycle G80 does not cause movement of the axis. The axis must be positioned to the required angle – for example with a G00 block.

Cancellation

To cancel Cycle G80, program G80 without entering an axis of rotation.

Pre-positioning

The following note applies to the TNC 426:

The machine manufacturer determines whether Cycle G80 positions the axes of rotation automatically or whether they must be pre-positioned in the part program. Your machine manual provides more detailed information.

If the axes are positioned automatically in Cycle G80:

- The TNC can only position controlled axes
- You can only use preset tools (with the full tool length defined in the G99 block or in the tool table)
- The position of the tool tip as referenced to the workpiece surface remains nearly unchanged after tilting
- The TNC tilts the working plane at the last programmed feed rate. The maximum feed rate that can be reached depends on the complexity of the swivel head or tilting table.

If the axes are not positioned automatically in Cycle G80, position them before defining the cycle, for example with a G00 block.

NC blocks

G00 G40 G90 Z+100* X+25Y+10***G01 A+15** F1000

G80 A+15* Define angle for compensating the slant

G00 G40 Z+80* Activate compensation for

Z axis

rotation

X-7.5 Y-10* Activate compensation for

X/Y axes

Pre-position in axis of

TNC 426/TNC 425/TNC 415 B/TNC 407

8.6 Other cycles

Position display in a tilted system

On activation of Cycle G80 the displayed positions (ACTL. and NOML.) and the datum indicated in the additional status display are referenced to the tilted coordinate system. The positions displayed immediately after cycle definition may not be the same as the coordinates of the last programmed position before Cycle G80.

As soon as you move an axis in a tilted system the compensation for this specific axis is activated. Move all axes to activate compensation for all axes.

Work space monitoring

The TNC only monitors the axes in the tilted system that are moved. If any of the software limit switches is traversed the TNC will display an error message.

Combining coordinate transformation cycles

When combining coordinate transformation cycles, always make sure the working plane is swiveled around the active datum. You can program a datum shift before activating Cycle G80. In this case, the machine-based coordinate system is shifted. If you program a datum shift after having activated Cycle G80, the tilted coordinate system is shifted. When resetting, it is important to use the reverse procedure—the cycle that was last defined should be reset first.

Example: 1. Activate datum shift

- 2. Activate tilting function
- 3. Activate rotation

:. ..

Machining

.

- 1. Reset rotation
- 2. Reset tilting function
- 3. Reset datum shift

Automatic workpiece measurement in the tilted system

Cycle G55 (see page 7-23) enables you to have the TNC measure a workpiece in the tilted system automatically. The measured data are stored in Q parameters for further processing (for example, for printout).

Other Cycles 8.6

Procedure for working with Cycle G80 WORKING PLANE

1. Create program

- Define the tool (not required when TOOL.T is active).
- · Call the tool.
- Retract the tool in the tool axis to a position where there is no danger of collision with the workpiece (clamping devices) during
- Position the tilt axis or axes with a G00 block to the appropriate angular value(s).
- · Activate datum shift if required.
- Define Cycle G80 WORKING PLANE; enter the angular values for the tilt axes.
- Traverse all main axes (X, Y, Z) to activate compensation.
- Write the program as if the machining process were to be executed in a non-tilted plane
- Reset Cycle G80 WORKING PLANE; program G80 without entering tilt axes.
- Reset datum shift if required.
- Pre-position the tilt axes to the 0° position if required.

2. Clamp workpiece

3. Preparations in the POSITIONING WITH MDI mode

Preposition the tilt axis/axes to the corresponding angular value(s). The angular value depends on the selected reference plane on the workpiece.

4. Preparations in the MANUAL OPERATION mode

Use the 3D-ROT soft key to set the function TILT WORKING PLANE to ACTIVE in the MANUAL OPERATION mode; enter the angular values for the tilt axes into the menu (see page 2-26).

The angular values entered in the menu must correspond to the actual position(s) of the tilted axis or axes, respectively. The TNC will otherwise calculate a wrong datum.

5. Set datum

- Manually by touching the workpiece with the tool in the non-tilted coordinate system (see page 2-7)
- Automatically by using a HEIDENHAIN 3D touch probe (see page 2-14)

6. Start part program in the PROGRAM RUN/FULL SEQUENCE mode

7. MANUAL OPERATION

Use the 3D-ROT soft key to set the function TILT WORKING PLANE to INACTIVE. Enter an angular value of 0° for each tilt axis into the menu (see page 2-26).

The TNC features two interfaces for data transfer between it and other devices.

Application examples:

- Downloading files into the TNC
- Transferring files from the TNC to external devices
- Printing files
- Remote operation of the TNC

The two interfaces can be used simultaneously.

9.1 Data Transfer with the TNC 426

The functions described in this chapter are operative in FE1 mode (see page 10-4). If you want to use these functions with a PC, you will need the TNC.EXE data transfer software from HEIDENHAIN.

To copy individual files into the TNC

- ➤ Press PGM MGT to call the file manager.
- ➤ Arrange the screen layout with the WINDOW soft key to show file names in both halves of the screen (see Chapter 1 under "File management on the TNC 426")
- ➤ In the left screen half, use the PATH soft key to select the directory into which you wish to copy the file from the external device.
- ➤ Move the highlight to the right screen half with the rightward arrow key.
- ➤ In the right screen half, use the PATH soft key to select the directory containing the files that you want to copy into the TNC.
- ➤ Move the highlight to the file you want to copy into the TNC.
- ➤ Press the COPY soft key and confirm with ENT. The TNC copies the highlighted file into the TNC.
- ➤ Close the file manager with END.

Data Transfer with the TNC 426

To copy multiple files into the TNC

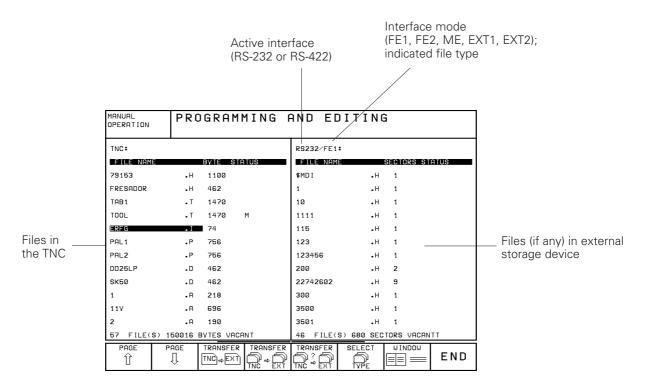
- ➤ Press PGM MGT to call the file manager.
- ➤ Arrange the screen layout with the WINDOW soft key to show file names in both halves of the screen (see Chapter 1 "File management on the TNC 426").
- ➤ In the left screen half, use the PATH soft key to select the directory into which you wish to copy the file from the external device.
- ➤ Move the highlight to the right screen half with the rightward arrow key.
- ➤ In the right screen half, use the PATH soft key to select the directory containing the files that you want to copy into the TNC.
- ➤ Move the highlight to the first file you want to copy into the TNC.
- ➤ Shift the soft-key row.
- ➤ Select the file tagging function with the TAG soft key.
- ➤ Press the TAG FILE soft key. The TNC tags the highlighted file.
- ➤ Move the highlight to the next file you want to copy. Tag the file with TAG FILE. Tag all files you want to copy in this way.
- Press the COPY TAG soft key and confirm with ENT. Die TNC copies the tagged files into the TNC.
- ➤ Close the file manager with END.

Copying files out of the TNC

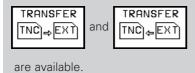
If you want to copy files out of the TNC, tag the files in the left half of the screen and copy them into the external device.

If you only want to copy a single file into or out of the TNC, use the COPY soft key after you have moved the highlight onto the file.

- If the TNC recognizes erroneously transferred program blocks, it will mark them with ERROR =. Correct these blocks in the PROGRAMMING AND EDITING mode.
- If you want to transfer files between two TNCs, start transmission from the receiving TNC.
- You can start a program in a program run mode of operation even if its transfer in the PROGRAMMING AND EDITING mode has not been completed yet. The program must not contain TOOL DEF blocks or label numbers.
- If you are transferring tables into the TNC you can overwrite individual lines or columns in the target table with the REPLACE FIELDS soft key. Prerequisites:
 - The target table must exist.
 - The file to be transferred must only contain the columns (or lines) you want to replace.

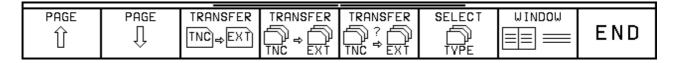

9.2 Data Transfer with the TNC 425, TNC 415 B and TNC 407

To select external data transfer:


Menu for external data transfer appears on the screen.

The screen is divided into two halves:

If you select the data transfer function from a tool table or pocket table, only the functions



9.2 Data Transfer with the TNC 425, TNC 415 B and TNC 407

Selecting and transferring files

The data transfer functions are provided in a soft-key row.

Soft-key row in the PROGRAMMING AND EDITING mode of operation:

Selecting files

Use the arrow keys to select the desired file. The PAGE soft keys are for scrolling up and down in the file directory. The SELECT TYPE soft key has the same function as described earlier (see Chapter 1 "File management on the TNC 425, TNC 415 B and TNC 407").

Transferring files from the TNC to an external device

The highlight is on a file that is stored in the TNC.

Function	Soft key
Transfer selected file	TRANSFER TNC ⇒EXT
Transfer all files	TRANSFER TNC ⇒ EXT
Select files consecutively for individual transfer. Press ENT to transfer, otherwise press NO ENT	TRANSFER ?

Selecting the file type

Use the SELECT TYPE soft key to select other types of files.

Select screen layout

Use the WINDOW soft key to select or deselect a split screen. The single screen mode can be selected both for TNC files and for externally stored files. If the highlight is at left, only TNC files are displayed. If the highlight is at right, only externally stored files are displayed.

9.2 Data Transfer with the TNC 425, TNC 415 B and TNC 407

Transferring files from an external device to the TNC

Use the cursor key to move the highlight to a file that is stored in the external device.

Function	Soft key
Transfer selected file	TRANSFER TNC ← EXT
Transfer all files	TRANSFER TNC ← EXT
Select files consecutively for individual transfer. Press ENT to transfer, otherwise press NO ENT	TRANSFER ↑ ? ↑ TNC ← EXT

Interrupt transfer

You can interrupt data transfer by pressing the END key or the END soft key.

- If the TNC recognizes erroneously transferred program blocks, it will mark them with ERROR =. These blocks must then be corrected in the PROGRAMMING AND EDITING mode.
- If you want to transfer files between two TNCs, start transmission from the receiving TNC.

Blockwise transfer

The menu to the right is for blockwise transfer (see page 3-11). First select as usual the name of the file to be transferred blockwise. Then start data transfer with the SELECT soft key.

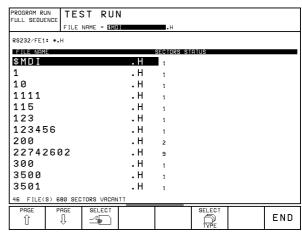


Fig. 9.1: Menu for blockwise transfer

When aborting blockwise transfer, you may have to reset the interface with the CLOSE RS-232-C soft key.

9.3 Pin Layout and Connecting Cable for the Data Interfaces

RS-232-C/V.24 Interface

HEIDENHAIN devices

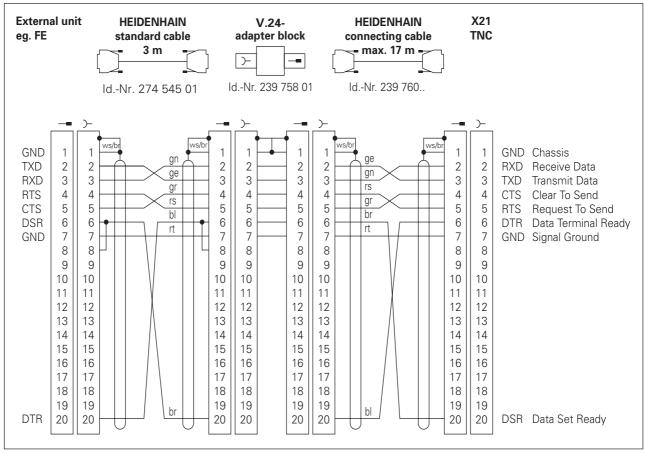


Fig. 9.2: Pin layout of the RS-232-C/V.24 interface for HEIDENHAIN devices

The connector pin layout on the adapter block differs from that on the TNC logic unit (X21).

9.3 Pin Layout and Connecting Cable for the Data Interfaces

Non-HEIDENHAIN devices

The connector pin layout on a non-HEIDENHAIN device may differ considerably from that on a HEIDENHAIN device, and depends on the unit and the type of data transfer. Fig. 9.3 shows the connector pin layout on the adapter block.

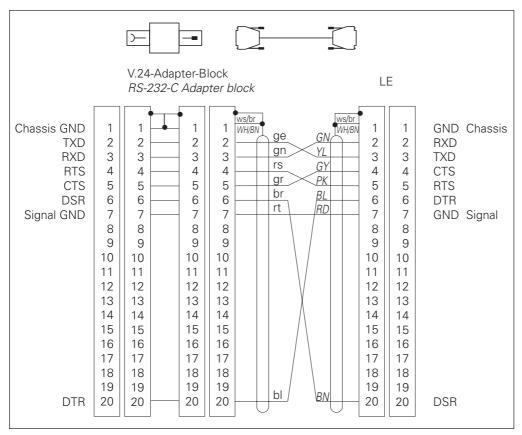
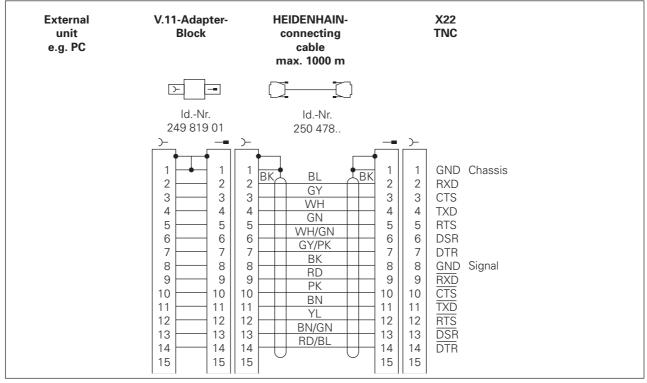



Fig. 9.3: Connecting a non-HEIDENHAIN device to the RS-232-C/V.24 interface

Pin Layout and Connecting Cable for the Data Interfaces

RS-422/V.11 Interface

Only non-HEIDENHAIN devices are connected to the RS-422 interface.

Pin layout of the RS-422/V.11 interface Fig. 9.4:

The pin layouts on the TNC logic unit (X22) and on the adapter block are identical.

9.4 Preparing the Devices for Data Transfer

HEIDENHAIN devices

HEIDENHAIN devices (FE floppy disk unit and ME magnetic tape unit) are already adapted to the TNC. They can be used for data transfer without further adjustments.

Example: FE 401 floppy disk unit

- Connect the power cable to the FE
- Connect the FE and TNC with the data interface cable
- Switch on the FE
- Insert a diskette into the upper drive
- Format the diskette if necessary
- Set the interface (see page 10-4)
- Transfer the data

- The memory capacity of a floppy disk is given in sectors.
- The baud rate can be set at the FE 401.

Non-HEIDENHAIN devices

The TNC and non-HEIDENHAIN devices must be adapted to each other.

To adapt a non-HEIDENHAIN device to the TNC

- PC: Adapt the software
- Printer: set the DIP switches

To adapt the TNC to a non-HEIDENHAIN device

Set the user parameters:

- 5020.0 to 5210.0 for EXT1
- 5020.1 to 5210.1 for EXT2

The two settings can be adjusted, for example, to a PC (e.g. EXT1) or to a printer (EXT2).

The MOD functions provide additional displays and input possibilities. The available MOD functions depend on the selected operating mode.

Functions and displays available in the PROGRAM-MING AND EDITING mode of operation:

- Display NC software number
- Display PLC software number
- Enter code number
- · Set data interface
- Machine-specific user parameters
- HELP files (if provided)

In the TEST RUN mode of operation:

- Display NC software number
- Display PLC software number
- Enter code number
- · Set data interface
- Graphic display of the workpiece blank in the working area of the machine
- Machine-specific user parameters
- HELP files (if provided)

In all other modes:

- Display NC software number
- Display PLC software number
- Display code digits for installed options
- Select position display
- Unit of measurement (mm or inch)
- Programming language (HEIDENHAIN or ISO)
- Selecting the axes for generating L blocks (conversational programming only)
- Axis traverse limits
- Display datums
- Display machining time
- HELP files (if provided)

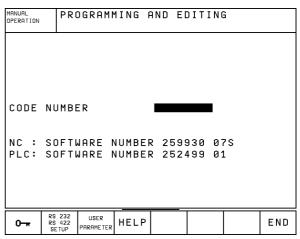


Fig. 10.1: MOD functions in the PROGRAMMING AND EDITING mode

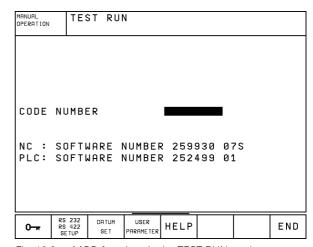
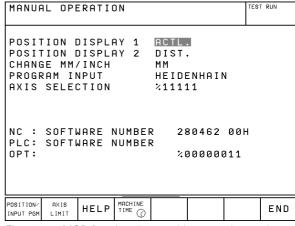
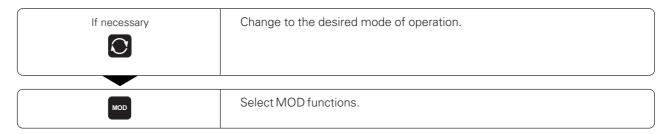
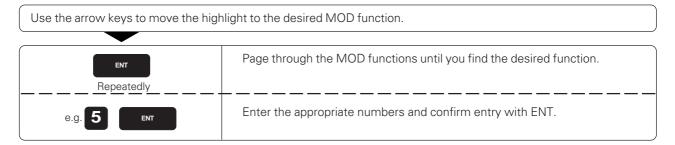


Fig. 10.2: MOD functions in the TEST RUN mode


Fig. 10.3: MOD functions in a machine operating mode

10.1 Selecting, Changing and Exiting the MOD Functions

To select the MOD functions:

To change the MOD functions:

To exit the MOD functions:

10.2 Software Numbers and Option Numbers

The software numbers of the NC and PLC are displayed in the MOD function opening screen. Directly below them are the code numbers for the installed options (only for conversational programming).

Digitizing option
 Digitizing and measuring touch probe options
 OPT: 1
 OPT: 11

10.3 Code Numbers

A code number is required for access to certain functions:

Function	Code number
To cancel file erase and edit protection (status P)	86 357
To select user parameters	123

10.4 Setting the External Data Interfaces

Press the soft key marked RS 232- / RS 422 - SETUP to call a menu for setting the external data interfaces.

- MODE OF OP. Type of external storage device: FE1, FE2, ME, EXT1, EXT2, LSV2
- BAUD RATE Sets the data transfer speed (110 to 38400 baud)
- ASSIGN Assigns either the RS-232 or the RS-422 interface to the operating modes
- PRINT Outputs digitized data through RS-232, RS-422 or FILE

Setting the RS-232 interface

The mode of operation and baud rates for the RS-232 interface are entered in the upper left of the screen.

Setting the RS-422 interface

The mode of operation and baud rates for the RS-422 interface are entered in the upper right of the screen.

Selecting the OPERATING MODE

External device	OPERATING MODE
 HEIDENHAIN floppy disk units FE 401 B FE 401 with program no. 230 626 03 or higher 	FE1
HEIDENHAIN FE 401 floppy disk unit with program number below 230 626 02	FE2
PC with HEIDENHAIN data transfer software TNC. EXE	FE2
HEIDENHAIN ME 101 magnetic tape unit (no longer produced)	ME 426
Non-HEIDENHAIN devices such as printers, tape punchers, PCs without TNC. EXE	EXT1, EXT2
PC with HEIDENHAIN software TNC REMOTE for remote operation	LSV2

• The HEIDENHAIN ME 101 magnetic tape unit (ME mode of operation) can only be used in the TNC mode of operation PROGRAMMING AND EDITING (not on TNC 426).

The following note applies to the TNC 426:

• The functions "Transfer all files", "Transfer selected file" and "Transfer directory" are not available in the operating modes FE2 and EXT.

Setting the BAUD RATE

On the TNC 425, TNC 415 B and TNC 407 controls, the baud rate (data transfer speed) can be selected from 110 to 38 400 baud. The baud rate of the ME 101 is 2400 baud.

On the TNC 426, the baud rate (data transfer speed) can be selected from $110 \text{ to } 115\ 200 \text{ baud}$.

ASSIGN

This function sets the destination for the transferred data.

Applications:

- Transferring values with Q parameter function D15
- Transferring values with Q parameter function D16 (only with TNC 426)
 Path on the TNC's hard disk in which the digitized data are stored (only with TNC 426)

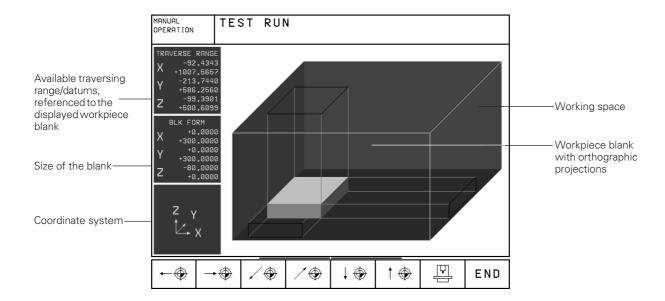
The TNC mode of operation determines whether the PRINT or PRINT-TEST function is used:

TNC mode of operation	Transfer function
PROGRAM RUN, SINGLE BLOCK	PRINT
PROGRAM RUN, FULL SEQUENCE	PRINT
TEST RUN	PRINT-TEST

You can set PRINT and PRINT-TEST as follows:

Function	Path to be entered (TNC 426)	Setting (TNC 407/TNC 415 B/TNC 425)
Transfer data with D15/D16 via RS-232	RS232:\	RS-232
Transfer data with D15/D16 via RS-422	RS422:\	RS-422
Save data to the TNC's hard disk or in the TNC memory	TNC:\	FILE
Save data in directory in which the program with D15/D16 is located (TNC 426). Do not save data (TNC 407/TNC 415 B/TNC 425)	- vacant -	- vacant -

File names


Mode of operation	File name
PROGRAM RUN	%D15RUN.A
TEST RUN	%D15SIM.A
PROGRAM RUN	%D16RUN.A
TEST RUN	%D16SIM.A
	PROGRAM RUN TEST RUN PROGRAM RUN

10.5 Machine-Specific User Parameters

The machine tool builder can assign functions to up to 16 user parameters. For more detailed information on user parameters, refer to your machine operating manual.

10.6 Showing the Workpiece in the Working Space

The DATUM SET soft key enables you to graphically check the position of the workpiece blank in the machine's working space and to activate work space monitoring in the TEST RUN mode of operation.

Overview of functions

Function	Soft key
Move workpiece blank to the left (graphically)	
Move workpiece blank to the right (graphically)	→⊕
Move workpiece blank forward (graphically)	∕⊕
Move workpiece blank backward (graphically)	∕ ⊕
Move workpiece blank upward (graphically)	↑ ⊕
Move workpiece blank downward (graphically)	↓ ⊕
Show workpiece blank referenced to the set datum	
Shift the soft-key row	or <
Show the entire traversing range referenced to the workpiece blank	
Show the machine datum in the working space	м91 🕁
Show a position determined by the machine tool builder (e.g. tool change position) in the working space	м92 🕀
Show the workpiece datum in the working space	*
Disable (OFF) or enable (ON) work space monitoring during test run	l 4 → I OFF / ON

10.7 Position Display Types

The positions indicated in figure 10.4 are:

- Starting position (A)
- Target position of the tool (2)
- Workpiece datum W
- Scale reference point (M)

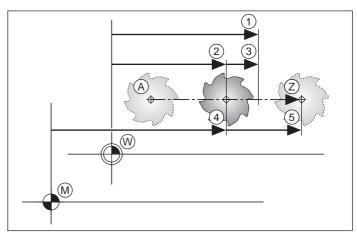


Fig. 10.4: Characteristic positions on the workpiece and scale

The TNC position display can show the following coordinates:

- Servo lag: the difference between nominal and actual positions ③LAG

With the MOD function POSITION DISPLAY 1 (see figure 10.3) you can select the position display in the status display.

With the MOD function POSITION DISPLAY 2 (see figure 10.3) you can select the position display in the additional status display.

10.8 Unit of Measurement

This MOD function determines whether coordinates are displayed in millimeters (metric system) or inches.

- To select the metric system (e.g., X = 15.789 mm), set the CHANGE MM/INCH function to MM.
 The value is displayed with 3 digits after the decimal point.
- To select the inch system (e.g., X = 0.6216 inch), set the CHANGE MM/INCH function to INCH.
 The value is displayed to 4 decimal places.

10.9 Programming Language for \$MDI

The PROGRAM INPUT mod function lets you decide whether to program the \$MDI file in HEIDENHAIN conversational dialog or in G-codes in accordance with ISO.

- To program the \$MDI.H file in conversational dialog, set the PROGRAM INPUT function to HEIDENHAIN.
- To program the \$MDI.I file according to ISO, set the PROGRAM INPUT function to ISO.

10.10 Selecting the Axes for Generating L Blocks (conversational programming only)

The AXIS SELECTION input field enables you to define the current tool position coordinates that are transferred to an L block. To generate a separate L block, press the "ACTUAL POSITION CAPTURE" soft key (see User's Manual for HEIDENHAIN Conversational Programming). On the TNC 407, up to 3 coordinates can be transferred; on the TNC 415 B, TNC 425 and TNC 426 controls, you can transfer up to 5 coordinates. The axes are selected by bit-oriented definition, similar to programming the machine parameters.

AXIS	SELECTION	%11111	Transfer the X, Y, Z, IV, and V axes
AXIS	SELECTION	%01111	Transfer the X, Y, Z, and IV axes
AXIS	SELECTION	%00111	Transfer the X, Y, and Z axes
AXIS	SELECTION	%00011	Transfer the X and Y axes
AXIS	SELECTION	%00001	Transfer the X axis

10.11 Axis Traverse Limits

The AXIS LIMIT mod function allows you to set limits to axis traverse within the machine's actual working envelope.

Possible application:

to protect an indexing fixture against tool collision.

The maximum range of traverse of the machine tool is defined by software limit switches. This range can be additionally limited through the AXIS LIMIT mod function. With this function you can enter the maximum and minimum traverse positions for each axis, referenced to the machine datum.

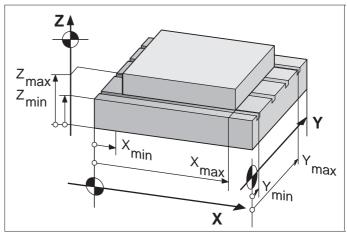
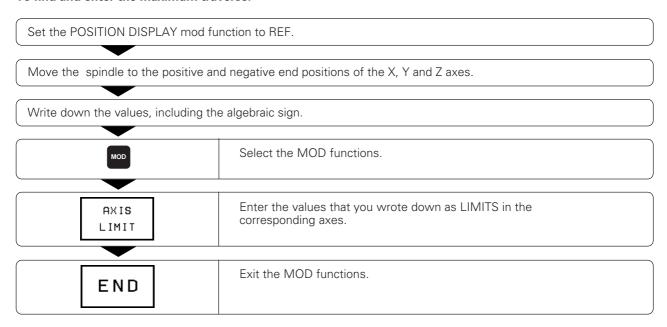



Fig. 10.5: Orienting traverse limits to workpiece size

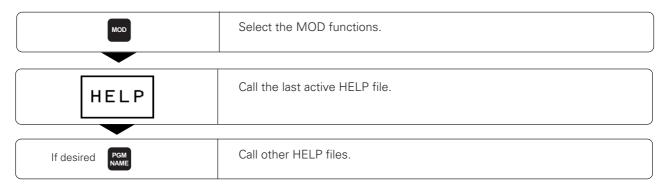
Working without additional traverse limits

To allow a machine axis to use its full range of traverse, enter the maximum traverse of the TNC (+/- 99999.999 mm) as the AXIS LIMIT.

To find and enter the maximum traverse:

- The tool radius is not automatically compensated in the axis traverse limit values.
- The traverse range limits and software limit switches become active as soon as the reference points are passed over.

Datum display


The values shown at the lower left of the screen are the manually set datums referenced to the machine datum. They cannot be changed in the menu.

10.12 HELP files

Help files are a way to find information quickly that you would otherwise have to search for in a manual. Help files can aid you in situations in which you need clear instructions before you can continue (for example, to retract the tool after an interruption in power). The miscellaneous functions may also be explained in a help file.

Help files are not provided on every machine. Your machine tool builder can provide you with further information on this feature.

To call help files:

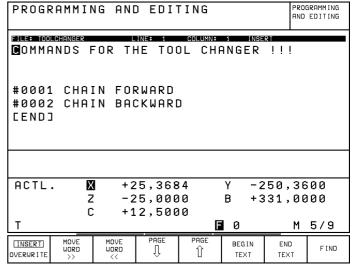


Fig. 10.6 HELP file in a machine operating mode

11.1 General User Parameters

General user parameters are machine parameters affecting TNC settings that the user may want to change in accordance with his requirements. Some examples of user parameters are:

- Dialog language
- Interface behavior
- Traversing speeds
- Sequence of machining
- · Effect of overrides

Input possibilities for machine parameters

Machine parameters can be programmed as

- Decimal numbers:
 - Enter only the number.
- Pure binary numbers:
 - Enter a percent sign (%) before the number.
- Hexadecimal numbers:
 - Enter a dollar sign (\$) before the number.

Example:

Instead of the decimal number 27 you can enter the binary number % 11011 or the hexadecimal number \$1B.

The individual machine parameters can be entered in the different number systems.

Some machine parameters have more than one function. The input value for these machine parameters is the sum of the individual values. For these machine parameters the individual values are preceded by a plus sign (+0, +1, etc.)

Selecting general user parameters

General users parameters are selected with code number 123 in the MOD functions.

The MOD functions also include machine specific user parameters (USER PARAMETERS).

External data transfer

Integrating TNC interfaces EXT1 (5020.0) and EXT2 (5020.1) to an external device:

MP5020.x 7 data bits (ASCII code, 8th bit = parity): +0

8 data bits (ASCII code, 9th bit = parity): +1

Block Check Character (BCC) any BCC:+0

Block Check Character (BCC) BCC control character not permitted: +2

Transmission stop through RTS active: +4
Transmission stop through RTS inactive: +0
Transmission stop through DC3 active: +8
Transmission stop through DC3 inactive: +0

Character parity even: +0
Character parity odd: +16
Character parity not desired: +0
Character parity desired: +32

11/₂ Stop bits: **+64** 2 Stop bits: **+64** 1 Stop bit: **+128** 1 Stop bit: **+192**

Example:

Use the following setting to adjust the TNC interface EXT2 (MP 5020.1)

to an external non-HEIDENHAIN device:

8 data bits, any BCC, transmission stop through DC3, even character

parity, character parity desired, 2 stop bits

Input value: 1+0+8+0+32+64 = 105 (entry value for MP 5020.1)

Interface type for EXT1 (5030.0) and EXT2 (5030.1):

MP5030.x Standard transmission: **0**

Interface for blockwise transfer: 1

Define data transfer through EXT1 (xxxx.0) and EXT2 (xxxx.1):

426

MP5200.x	Start transmission (STX):	Decimal value for ASCII character (0 to 127)
MP5201.x	End transmission (ETX)	
MP5202.x	Data input (1st character) H	
MP5203.x	Data input (2nd character) E	
MP5204.x	Data output (1st character) H	
MP5205.x	Data output (2nd character) A	
MP5206.x	Start of heading (SOH)	
MP5207.x	End of transmission block (ETB	
MP5208.x	Positive acknowledgement (AC	<)
MP5209.x	Negative acknowledgement (NA	K)
MP5210.x	End of transmission (EOT)	

3D touch probes and digitizing

Select touch probe

MP6200 Triggering touch probe: **0**

Measuring touch probe: 1

Select signal transmission

MP6010 Touch probe with cable transmission: **0**

Touch probe with infrared transmission: 1

Probing feed rate for triggering touch probes

MP6120 80 to 3 000 [mm/min]

Maximum traverse to first probe point

MP6130 0 to 99 999.9999 [mm]

Safety clearance to probing point during automatic measurement

MP6140 0 to 99 999.9999 [mm]

Rapid traverse for triggering touch probes

MP6150 1 to 300 000 [mm/min]

Measure center misalignment of the stylus when calibrating a triggering touch probe

MP6160 No 180° rotation of the 3D touch probe during calibration: **0**

M function for 180° rotation of the 3D touch probe during calibration: 1 to 88

Lubricating the touch probe axis during digitizing with a triggering touch probe

426

MP6220 Traverse in the touch probe axis at the end of line: 0 to 99 999.9999 [mm]

Lubricating the touch probe axis during digitizing with a triggering touch probe

426

MP6221 Time after which the axis should be lubricated: 0 to 65 535 [min]

3D touch probes and digitizing

MP6300 Reserved

Infeed of the stylus when digitizing with a measuring touch probe

MP6310 0.1 to 2.0000 [mm] (recommended input value: 1mm)

Measure center misalignment of the stylus when calibrating a measuring touch probe

MP6321 Measure center misalignment: **0**

Do not measure center misalignment: 1

Assign touch probe axis to machine axis for a measuring touch probe

Ensure that the touch probe axes are correctly assigned to the machine axes. Wrong assignment could lead to a stylus break.

MP6322.0 Machine X axis parallel to

Touch probe X axis: 0

Touch probe Y axis: 1
Touch probe Z axis: 2

MP6322.1 Machine Y axis parallel to

Touch probe X axis: 0

Touch probe Y axis: 1

Touch probe Z axis: 2

MP6322.2 Machine Z axis parallel to

Touch probe X axis: **0**Touch probe Y axis: **1**Touch probe Z axis: **2**

Maximum stylus deflection on measuring touch probes

MP6330 0.1 to 4.0000 [mm]

Feed rate for positioning measuring touch probes at MIN point and approaching contour

MP6350 10 to 3 000 [mm/min]

Probing feed rate for measuring touch probes

MP6360 10 to 3 000 [mm/min]

Rapid traverse for measuring touch probes in the probe cycle

MP6361 10 to 3 000 [mm/min]

Feed rate decrease when the stylus of a measuring touch probe is deflected to the side

The TNC decreases the feed rate according to a preset characteristic curve. The minimum input value is 10% of the programmed digitizing feed rate.

iniminant input value is 10 % of the programmed dig

MP6362 Feed rate decrease not active: **0** Feed rate decrease active: **1**

Target window for digitizing contour lines with measuring touch probes

When you are digitizing contour lines the individual contour lines do not end exactly in their starting points. With machine parameter MP 6390 you can define a square target window within which the end point must lie after the touch probe has orbited the model. Enter half the side length of the target window for the input value.

MP6390 0.1 to 4.0000 [mm]

3D touch probes and digitizing

Radius measurement with the TT 120 touch probe: Probing direction

MP6505 Positive probing direction in the angle reference axis (0° axis): **0**

Positive probing direction in the +90° axis: 1

Negative probing direction in the angle reference axis (0° axis): 2

Negative probing direction in the +90° axis: 3

Probing feed rate for second measurement with TT 120, stylus shape, corrections in TOOL.T

MP6507 Calculate feed rate for second measurement with TT 120, with constant tolerance: +0

Calculate feed rate for second measurement with TT 120, with variable tolerance: +1

Constant feed rate for second measurement with TT 120: +2

TT 120 with cylindrical stylus: +0
TT 120 with cubic stylus: +64

Automatically enter the results in TOOL.T: +0

Do not correct TOOL.T: +128

Maximum permissible error of measurement for measuring rotating tools with the TT 120

Required for calculating the probing feed rate in connection with MP6570.

MP6510 0.001 to 0.999 [mm] (recommended input value: 0.005 mm)

Feed rate for probing a tool with the TT 120 during standstill of the tool

MP6520 10 to 3 000 [mm/min]

Radius measurement with the TT 120: Distance from lower edge of tool to upper edge of stylus

The value entered for MP6530 is added to the value defined in the tool table for TT:L-OFFS.

MP6530 0.0001 to 9 999.9999 [mm]

Rapid traverse for the TT 120 touch probe in the probe cycle

MP6550 10 to 10 000 [mm/min]

Measuring rotating tools: Permissible rotational speed at the circumference of the milling tool

MP6570 40.000 to 120.0000 [m/min]

Stylus center REF coordinates of the TT 120 touch probe

 MP6580.0
 X axis: -99 999.9999 to 99 999.9999 [mm]

 MP6580.1
 Y axis: -99 999.9999 to 99 999.9999 [mm]

 MP6580.2
 Z axis: -99 999.9999 to 99 999.9999 [mm]

11.1 General User Parameters

TNC displays, TNC editor

Programming station

MP7210 TNC with machine: **0**

TNC as programming station with active PLC: **1** TNC as programming station with inactive PLC: **2**

Acknowledgment of POWER INTERRUPTED message after switch-on

MP7212 Acknowledge with key: 0

Acknowledge automatically: 1

ISO programming: Block number increment

MP7220 0 to 150

Length of file names

MP7222 Maximum 8 characters: 0

Maximum 12 characters: **1** Maximum 16 characters: **2**

Inhibit particular file types

If a particular file type is inhibited, all files of this type will be erased.

MP7224.0 Do not inhibit file types: +0

Inhibit HEIDENHAIN programs: +1

Inhibit ISO programs: +2 Inhibit tool tables: +4 Inhibit datum tables: +8 Inhibit pallet tables: +16 Inhibit text files: +32 Inhibit PNT tables: +128

Inhibit the editor for certain file types

MP7224.1 Do not inhibit editor: +0

Inhibit editor for HEIDENHAIN programs: +1

Inhibit editor for ISO programs: +2
Inhibit editor for tool tables: +4
Inhibit editor for datum tables: +8
Inhibit editor for pallet tables: +16
Inhibit editor for text files: +32
Inhibit editor for PNT tables: +128

Configure pallet files

MP7226.0 Pallet file inactive: 0

Number of pallets per pallet file: 1 to 255

Configure datum files

MP7226.1 Datum table inactive: 0

Number of datums per datum table: 1 to 255

Dialog language for TNC 425/TNC 415 B/TNC 407

MP7230 German: **0**

English: 1

Dialog language for TNC 426

MP7230 English: **0**

German: 1 Czech: 2 French: 3 Italian: 4 Spanish: 5 Portuguese: 6 Swedish: 7 Danish: 8 Finnish: 9 Dutch: 10

Protect OEM cycles in the TNC program memory

426

MP7240 Protect programs: **0**

Do not protect programs: 1

Configure tool tables

MP7260 Inactive: **0**

Number of tools per tool table: 1 to 254

Configure pocket tables

MP7261 Inactive: **0**

Number of pockets per pocket table: 1 to 254

Configure tool table; column number of the data in the tool table for (Do not show data in the table: enter 0)

```
Tool name - NAME: 0 to 24
MP7266.0
MP7266.1
              Tool length - L: 0 to 24
MP7266.2
              Tool radius - R: 0 to 24
MP7266.3
              Tool radius - R2: 0 to 24
MP7266.4
              Oversize length - DL: 0 to 24
MP7266.5
              Oversize radius - DR: 0 to 24
MP7266.6
              Oversize radius2 - DR2: 0 to 24
MP7266.7
              Tool locked - TL: 0 to 24
MP7266.8
              Replacement tool - RT: 0 to 24
              Maximum tool life - TIME1: 0 to 24
MP7266.9
MP7266.10
              Maximum tool life for TOOL CALL - TIME2: 0 to 24
              Current tool age - CUR. TIME: 0 to 24
MP7266.11
MP7266.12
              Tool comment - DOC: 0 to 24
MP7266.13
              Number of cutting edges - CUT.: 0 to 24
MP7266.14
              Length tolerance for tool wear - LTOL: 0 to 24
MP7266.15
              Radius tolerance for tool wear - RTOL: 0 to 24
MP7266.16
              Cutting direction - DIRECT .: 0 to 24
MP7266.17
              PLC status - PLC: 0 to 24
MP7266.18
              Tool offset in addition to MP6530 between upper edge of stylus and lower edge of tool – TT:L-OFFS.: 0 to 24
              Tool offset between stylus center and tool center - TT:R-OFFS.: 0 to 24
MP7266.19
MP7266.20
              Length tolerance for tool break - LBREAK: 0 to 24
MP7266.21
              Radius tolerance for tool break - RBREAK: 0 to 24
```

Additional machine parameters for TNC 426

MP7266.22 Tooth length (Cycle 22) - LCUTS: 0 to 24

MP7266.23 Maximum plunge angle (Cycle 22) – ANGLE: 0 to 24

Configure pocket table; column number of the data in the tool table for (Do not show data in the table: enter 0)

MP7267.0 Tool number – T: 0 to 5

MP7267.1 Special tool – ST: 0 to 5

MP7267.2 Fixed pocket – F: 0 to 5

MP7267.3 Pocket locked – L: 0 to 5

MP7267.4 PLC – Status – PLC: 0 to 5

MANUAL OPERATION mode: Display feed rate

MP7270 Display feed rate F only if an axis direction button is pressed: 0

Display feed rate F even if no axis direction button is pressed

(feed rate of the "slowest" axis): 1

Decimal character

MP7280 The decimal character is a comma: **0**

The decimal character is a point: 1

Position display in the tool axis

MP7285 Display is referenced to the tool datum: **0**

Display in the tool axis is referenced to the tool face: 1

Display step for the X axis

MP7290.0 0.1 mm: **0**

0.05 mm: **1** 0.01 mm: **2** 0.005 mm: **3** 0.001 mm: **4** 0.0005 mm: **5**

Display step for the Y axis

MP7290.1 0.1 mm: **0**

0.05 mm: **1** 0.01 mm: **2** 0.005 mm: **3** 0.001 mm: **4** 0.0005 mm: **5**

Display step for the Z axis

MP7290.2 0.1 mm: **0**

0.05 mm: **1** 0.01 mm: **2** 0.005 mm: **3** 0.001 mm: **4** 0.0005 mm: **5**

11.1 General User Parameters

TNC displays, TNC editor

Display step for the IV axis

MP7290.3

0.1 mm: **0** 0.05 mm: **1** 0.01 mm: **2** 0.005 mm: **3** 0.001 mm: **4** 0.0005 mm: **5**

Display step for the V axis

MP7290.4

0.1 mm: **0** 0.05 mm: **1** 0.01 mm: **2** 0.005 mm: **3** 0.001 mm: **4** 0.0005 mm: **5**

Inhibit datum setting

MP7295

Do not inhibit datum setting: +0
Inhibit datum setting in the X axis: +1
Inhibit datum setting in the Y axis: +2
Inhibit datum setting in the Z axis: +4
Inhibit datum setting in the IV axis: +8
Inhibit datum setting in the V axis: +16

Inhibit datum setting with the orange axis keys

MP7296

Do not inhibit datum setting: 0

Inhibit datum setting with the orange axis keys: 1

Reset status display, Q parameters and tool data

MP7300

Reset them all when a program is selected: 0

Reset them all when a program is selected and with M02, M30, N99999: 1

Reset only status display and tool data when a program is selected: **2**Reset only status display and tool data when a program is selected

and with M02, M30, N99999: 3

Reset status display and Q parameters when a program is selected: **4** Reset status display and Q parameters when a program is selected

and with M02, M30, N99999: 5

Reset status display when a program is selected: $m{6}$ Reset status display when a program is selected

and with M02, M30, N99999: 7

Graphic display mode

MP7310

Projection in 3 planes according to ISO 6433, projection method 1: **+0** Projection in 3 planes according to ISO 6433, projection method 2: **+1**

Do not rotate coordinate system for graphic display: +0 Rotate coordinate system for graphic display by 90°: +2

Display new BLK FORM in G54 DATUM SHIFT referenced to previous datum: +0 Display new BLK FORM in G54 DATUM SHIFT referenced to new datum: +4

Do not show cursor position during projection in 3 planes mode: **+0** Show cursor position during projection in 3 planes mode: **+8**

Graphic simulation without programmed tool axis: Tool radius

MP7315 0 to 99 999.9999 [mm]

Graphic simulation without programmed tool axis: Penetration depth

MP7316 0 to 99 999.9999 [mm]

Graphic simulation without programmed tool axis: M function for start

MP7317.0 0 to 88 (0: Function inactive)

Graphic simulation without programmed tool axis: M function for end

MP7317.1 0 to 88 (0: Function inactive)

Determine the TNC program memory to be occupied during blockwise transfer

MP7228.0 Minimum program memory to be used: 1 to 1024 [kilobytes]MP7228.1 Maximum program memory to be used: 1 to 1024 [kilobytes]

Screen saver

Enter the time after which the TNC should start the screen saver

MP7392 0 to 99 [min] (0: Function inactive)

426

11.1 General User Parameters

Machining and program run

Cycle G85 RIGID TAPPING: Oriented spindle stop at beginning of cycle

MP7160 Spindle orientation: **0**

No spindle orientation: 1

Effect of Cycle G72 SCALING FACTOR

MP7410 SCALING FACTOR effective in 3 axes: **0**

SCALING FACTOR effective in the working plane only: 1

Tool data in the programmable probe Cycle G55

MP7411 Overwrite current tool data by the calibrated data from the 3D touch probe system: 0

Current tool data are retained: 1

Cycle G57 ROUGH-OUT: Selecting the pocket milling technique

MP7420 Mill a channel around the contour—clockwise for islands and

counterclockwise for pockets: +0

Mill a channel around the contour—clockwise for pockets and

counterclockwise for islands: +1

First mill the channel, then rough out the pocket: +0
First rough out the pocket, then mill the channel: +2

Combine compensated contours: +0
Combine uncompensated contours: +4

Complete one process for all infeeds before switching to the other process: +0

Mill channel and rough-out for each infeed depth before continuing to the next depth: +8

POCKET MILLING cycle (G75/G76) and CIRCULAR POCKET cycle (G77/G78): Overlap factor

MP7430 0.1 to 1.414

Permissible distance by which an end point can be off the path of a perfect circle

MP7431 0.0001 to 0.016 [mm]

Behavior of M functions

MP7440 Program stop with M06: +0

No program stop with M06: +1

No cycle call with M89: +0

Modal cycle call with M89: +2

Program stop with M functions: +0
No program stop with M functions: +4

Kv factors cannot be switched through M105 and M106: +0
Kv factors can be switched through M105 and M106: +8

Reduce the feed rate in the tool axis with M103 F..., function inactive: +0 Reduce the feed rate in the tool axis with M103 F..., function active: +16

The Kv factors for position loop gain are set by the machine tool builder. For more detailed information on this subject, refer to your machine manual.

Machining and program run

Corners whose angles are less than the entered value will be machined at a decelerated feed rate (if radius compensation is R0 or if the angle is at an inside corner)

This feature works both during operation with servo lag as well as with feed precontrol.

MP7460 0.0000 to 179.9999 [°]

Maximum contouring speed at a feed rate override setting of 100% in the program run modes

107 41

415

MP7470 0 to 99 999 [mm/min]

Datums from a datum table are referenced to the

MP7475 Workpiece datum: **0**

Machine datum: 1

11.1 General User Parameters

Electronic handwheel

Handwheel type

MP7640

Machine without handwheel: 0

HR 330 with additional keys—the handwheel keys for traverse direction and

rapid traverse are evaluated by the NC: 1

HR 130 without additional keys: 2

HR 330 with additional keys—the handwheel keys for traverse direction and

rapid traverse are evaluated by the PLC: **3** HR 332 with twelve additional keys: **4** Multi-axis handwheel with additional keys: **5**

HR 410 with auxiliary functions: 6

Entry of interpolation factor

MP7641

Interpolation factor is entered on the keyboard: 0

Interpolation factor is set by the PLC: 1

Machine parameters that can be set for the handwheel by the machine tool builder

MP 7645.7	0 to 255
MP 7645.6	0 to 255
MP 7645.5	0 to 255
MP 7645.4	0 to 255
MP 7645.3	0 to 255
MP 7645.2	0 to 255
MP 7645.1	0 to 255
MP 7645.0	0 to 255

11.2 Miscellaneous Functions (M Functions)

Miscellaneous functions with predetermined effect

M	Effect	Effective start	at block end	Page
M00	Stop program run/spindle STOP/coolant OFF		•	3-5
M02	Stop program run/spindle STOP/coolant OFF/ Clear status display (depending on machine parameter)/ Go to block 1		•	3-5
M03 M04 M05	Spindle ON clockwise Spindle ON counterclockwise Spindle STOP	•	•	
M06	Tool change/stop program run (depending on machine parameter)/ Spindle STOP		•	3-5
M08 M09	Coolant ON Coolant OFF	•	•	
M13 M14	Spindle ON clockwise/coolant ON Spindle ON counterclockwise/coolant ON	•		
M30	Same function as M02		•	3-5
M89	Vacant miscellaneous function or Cycle call, modally effective (depending on machine parameter)	•	•	8-3
M90	Only in lag mode: Constant contouring speed at corners	•		5-36
M91	Within the positioning block: Coordinates are referenced to machine datum	•		5-39
M92	Within the positioning block: Coordinates are referenced to position defined by machine builder, such as tool change position	•		5-39
M93	Reserved	•		
M94	Reduce display of rotary axis to value less than 360°	•		5-43
M95	Reserved		•	
M96	Reserved		•	
M97	Machine small contour steps		•	5-37
M98	Completely machine open contours		•	5-38
M99	Blockwise cycle call		•	8-3

Miscellaneous functions with predetermined effect

M	Effect	Effective at start ei	block nd	Page
M101 M102	Automatic tool change with replacement tool if maximum tool life has expired Reset M101	•		4-16 4-16
M103	Reduce feed rate during plunging to factor F (percentage)	•		5-40
M105 M106	Machining with first Kv factor Machining with second Kv factor	•		
M107 M108	Suppress error message for replacement tool with oversize Reset M107	•		
M109 M110 M111	Constant contouring speed at tool cutting edge on circular arcs (increase and decrease feed rate) Constant contouring speed at tool cutting edge on circular arcs (feed rate decrease only) Reset M109/M110	•		5-41 5-41 5-41
M112 M113	Automatic insertion of rounding arcs at non-tangential straight-line transitions; Enter tolerance T for contour deviation Reset M112	•		5-41
M114 M115	Automatic compensation of machine geometry during operation with tilting axes Reset M114	•		5-42
M116	Feed rate for angular axes in mm/min	•		5-43
M126 M127	Optimized traverse of rotary axes Reset M126	•		5-44 5-44

The miscellaneous functions M105 and M106 are defined and enabled by the machine tool builder. Please refer to your machine manual for more information.

Vacant miscellaneous functions

Vacant miscellaneous functions are set by the machine tool builder. These functions are described in the machine manual.

M	Function	Effective at Start End of block	M	Function	Effective Start of block	at End
M01		•	M50		•	
M07		•	M51		•	
M10		•	M52			•
M11		•	M53			•
M12		•	M54			•
M15		•	M55		•	
M16		•	M56		•	
M17		•	M57		•	
M18		•	M58		•	
M19		•	M59		•	
M20		•	M60			•
M21		•	M61		•	
M22		•	M62		•	
M23		•	M63			•
M24		•	M64			•
M25		•	M65			•
M26		•	M66			•
M27		•	M67			•
M28		•	M68			•
M29		•	M69			•
M31		•	M70			•
M32		•	M71		•	
M33		•	M72		•	
M34		•	M73		•	
M35		•	M74		•	
M36		•	M75		•	
M37		•	M76		•	
M38		•	M77		•	
M39		•	M78		•	
M40		•	M79		•	
M41		•	M80		•	
M42		•	M81		•	
M43		•	M82		•	
M44		•	M83		•	
M45		•	M84		•	
M46		•	M85		•	
M47		•	M86		•	
M48		•	M87		•	
M49		•	M88		•	

11.3 Preassigned Q Parameters

Q100 to Q113 are assigned values by the TNC. These values include:

- Values from the PLC
- Tool and spindle data
- Data on operating status, etc.

Values from the PLC: Q100 to Q107

The TNC uses Q100 to Q107 to transfer values from the PLC to an NC program.

Tool radius: Q108

The current value of the tool radius is assigned to Q108.

Tool axis: Q109

The value of Q109 depends on the current tool axis.

Tool axis	Parameter value
No tool axis defined	Q109 = -1
Z axis	Q109 = 2
Y axis	Q109 = 1
X axis	Q109 = 0

Spindle status: Q110

The value of Q110 depends on which M function was last programmed.

M function	Parameter value
No spindle status defined	Q110 = -1
M03: Spindle ON, clockwise	Q110 = 0
M04: Spindle ON, counterclockwise	Q110 = 1
M05 after M03	Q110 = 2
M05 after M04	Q110 = 3

Coolant on/off: Q111

M function	Parameter value
M08: Coolant on	Q111 = 1
M09: Coolant off	Q111 = 0

Overlap factor: Q112

The overlap factor for pocket milling (MP 7430) is assigned to Q112.

Unit of measurement for dimensions in the part program: Q113

The value of parameter Q113 specifies whether the highest-level NC program (for nesting with %) is programmed in millimeters or inches.

Dimensions of the main program	Parameter value
Metric system (mm)	Q113 = 0
Inch system	Q113 = 1

Tool length: Q114

The current value for the tool length is assigned to Q114.

Coordinates after probing during program run

Q115 to Q119 contain the coordinates of the spindle position at the moment of contact during programmed measurement with the 3D touch probe. The length and radius of the probe tip are not compensated in these coordinates.

Coordinate axis	Parameter
X axis	Q115
Y axis	Q116
Z axis	Q117
IVth axis	Q118
Vth axis	Q119

Deviation between actual value and nominal value during automatic tool measurement with the TT 110 touch probe (conversational programming only)

Actual-nominal deviation	Parameter
Tool length	Q115
Tool radius	Q116

Tilting the working plane with mathematical angles: Rotary axis coordinates calculated by the TNC

Coordinates	Parameter
A axis	Q120
B axis	Q121
C axis	Q122

11.4 Features, Specifications and Accessories

Description	Contouring control for machines with up to five axes. Features digital speed control and oriented spindle stop.
Components	Logic unit, keyboard, color VDU with soft keys
Data interfaces	RS-232-C / V.24 RS-422 / V.11
	Expanded data interface with LSV/2 protocol for remote operation of the TNC through the data interface with HEIDEN-HAIN software TNC REMOTE.
Simultaneous axis control for contour elements	Straight lines: up to 5 axes TNC 407: 3 axes Export versions TNC 415 F, TNC 425 E and TNC 426 E: 4 axes
	Circles: up to 3 axes (with tilted working plane)
	Helices: 3 axes
"Look Ahead"	Defined rounding of discontinuous contour transitions (such as for 3D surfaces) Collision prevention with the SL cycle for open contours (G125) Geometry pre-calculation for feed rate adaptation
Background programming	One part program can be edited while the TNC runs another program (TNC 407: without graphics).
Graphics	Interactive programming graphics Test run graphics Simultaneous program run graphics (not with TNC 407)
File types	HEIDENHAIN conversational programming ISO programming Tool tables Datum tables Point tables Pallet files Text files System files
Program memory	TNC 426: 170 MB hard disk for NC programs No limit on number of files TNC 425, TNC 415 B: Battery-buffered, for up to 100 files Capacity: 256K bytes TNC 407: Capacity: 128K bytes
Tool definitions	Up to 254 tools in the program or in tables
Programming support	Functions for approaching and departing the contour Structuring long programs Additional feature on TNC 426: On-screen pocket calculator

11.4 Features, Specifications and Accessories

Contour elements	Straight line
Contour elements	Chamfer
	Circular arc
	Circle center
	Circle radius
	Tangentially connecting circular arc Corner rounding
	Straight lines and circular arcs for
	approaching and departing contours
Free contour programming	For all contour elements not dimensioned for conventional NC programming
Three-dimensional radius compensation (not on TNC 407)	For changing tool data without having to recalculate the part program
Program jumps	Subprograms
	Program section repeats
	Main program as subprogram
Fixed cycles	Peck drilling and tapping (also with synchronized spindle)
	Thread cutting
	Rectangular and circular pocket milling
	Slot milling Milling pockets and islands from a list of
	subcontour elements
	Cylindrical surface interpolation
Coordinate transformations	Datum shift
	Mirroring Rotation
	Scaling factor
	Tilting the working plane (not TNC 407)
BD touch probe applications	Touch probe functions for setting datums
	and for automatic workpiece measurement
	Digitizing 3D surfaces with the measuring touch probe (optional, not TNC 407)
	Digitizing 3D surfaces with the triggering
	touch probe (optional, conversational
	programming only)
	Automatic tool measurement with the TT 120 touch probe (conversational
	programming only)
Mathematical functions	Basic arithmetic (+, -, x, ÷)
	Trigonometry (sine, cosine, tangent,
	arc sine, arc cosine, arc tangent) Square root (\sqrt{a}) and
	Root sum of squares ($\sqrt{a^2 + b^2}$)
	Squaring (SQ)
	Powers (^)
	π Logarithm
	Exponential function
	Negation (NEG)
	Forming an absolute number (ABS) Forming an integer (INT)
	Dropping the values before the decimal
	point (FRAC)
	Logical comparisons (greater than, less than, equal to, not equal to)

Block processing time		nds per block
	(INC 407: 2	25 ms/block)
Control loop cycle time	TNC 426:	Contouring interpolation: 3 ms Fine interpolation: 0.6 ms (speed)
	TNC 425:	Contouring interpolation: 3 ms Fine interpolation: 0.6 ms (speed)
	TNC 415 B:	Contouring interpolation: 3 ms Fine interpolation: 0.6 ms (contour)
	TNC 407:	6 ms
Data transfer rate	TNC 425: TNC 415 B:	Max. 115 200 baud Max. 38 400 baud Max. 38 400 baud Max. 38 400 baud
Ambient temperature		0° to 45° C (32° to 113° F) 0° to 70° C (–22° to 158° F)
Traverse range	Max. ± 100	m (± 2540 in.)
Traversing speed	Max. 300 m	n/min (11 810 ipm)
Spindle speed	Max. 99 999	9 rpm
Input range	(TNC 407, TNC 426 E:	9.999 mm (3937 in.)

Accessories

FE 401 floppy disk unit	
Description	Portable table-top unit
Applications	All TNC contouring controls as well as TNC 131, TNC 135
Data interfaces	2 interfaces RS-232-C/V.24
Data transfer rate	TNC: 2400 to 38 400 baudPRT: 110 to 9600 baud
Disk drives	Separate drive for copying, capacity 795 kilobytes (approx. 25,000 blocks), up to 256 files
Floppy disks	3.5 inch, DS DD, 135 TPI

TS 220 and TS 630 triggering 3D touch probes		
Description		Touch probe system with ruby tip and stylus with rated break point, standard shank for spindle insertion
Signal transmission	TS 220:	Transmission via cable, integrated interface
	TS 630:	Infrared transmission, separate transmitting and receiving units
Spindle insertion	TS 220:	manual
	TS 630:	automatic
Probing reproducibil	ity	Better than 1 µm (0.000 04 in.)
Probing speed		Maximum 3 m/min (118 ipm)

TT 120 triggering 3D touch probe				
Description	Touch probe system with hardened, stainless-steel probing element (steel plate), protection class IP 67			
Interface	Connected to TNC via 5 V supply			
Installation	Fixed installation within the machine working space			
Probing speed	Maximum 3m/min (118 ipm)			

11.4 Features, Specifications and Accessories

Electronic handwheels	
HR 130	Integrable unit
HR 150	Fixed-axis handwheel for the HRA 110 adapter
HR 330	Portable version, transmission via cable. Includes axis address keys, rapid traverse key, safety switch, emergency stop button

11.5 TNC Error Messages

The TNC automatically generates error messages when it detects problems such as

- Incorrect data input
- Logical errors in the program
- Contour elements that are impossible to machine
- Incorrect use of the touch probe system

An error message that contains a program block number was caused by an error in the indicated block or in the preceding block. To clear a TNC error message, first correct the error and then press the CE key.

Some of the more frequent TNC error messages are explained in the following list.

TNC error messages during programming

ENTRY VALUE INCORRECT

- Enter a correct label number
- Note the input limits

EXT. IN-/OUTPUT NOT READY

- Connect the data transfer cable.
- Transfer cable is defective or not soldered properly.
- Switch on the connected device (PC, printer).
- The data transfer speeds (baud rates) are not identical.

FILE FORMAT HAS CHANGED

After a software change the internal format has changed. The TNC can no longer read the file. Erase the file.

407

415

425

FURTHER PROGRAM ENTRY IMPOSSIBLE

Erase some old files to make room for new ones.

JUMP TO LABEL 0 NOT PERMITTED

Do not program L 0,0.

LABEL NUMBER ALREADY ASSIGNED

A given label number can only be entered once in a program.

PROTECTED PGM!

Cancel edit protection if you wish to edit the program.

TNC error messages during test run and program run

ANGLE REFERENCE MISSING

- Complete your definition of the arc and its end points.
- If you enter polar coordinates, define the polar coordinate angle correctly.

ARITHMETICAL ERROR

You have calculated with non-permissible values.

- Define values within the range limits
- Choose probe positions for the 3D touch probe that are farther apart
- All calculations must be mathematically possible

AXIS DOUBLE PROGRAMMED

Each axis can have only one value for position coordinates.

BLK FORM DEFINITION INCORRECT

- Program the MIN and MAX points according to the instructions.
- Choose a ratio of sides that is less than 200:1.

CHAMFER NOT PERMITTED

A chamfer block must be located between two straight line blocks with identical radius compensation.

CIRCLE CENTER UNDEFINED

- Define a circle center with I,J (JK, IK).
- Define a pole with I,J (JK, IK).

CIRCLE END POS. INCORRECT

- Enter complete information for connecting arc.
- Enter end points that lie on the circular path.

CYCL INCOMPLETE

- Define the cycles with all data in the proper sequence.
- Do not call the coordinate transformation cycles.
- Define a cycle before calling it.
- Enter a pecking depth other than 0.

EXCESSIVE SUBPROGRAMMING

- Conclude subprograms with G98 L0.
- Program Ln,0 for subprogram calls.
- Program Ln,m for program section repeats.
- Subprograms cannot call themselves.
- Subprograms cannot be nested in more than eight levels.
- Main programs cannot be nested as subprograms in more than four levels.

FEED RATE IS MISSING

• Enter feed rate for G01 block.

GROSS POSITIONING ERROR

The TNC monitors positions and movements. If the actual position deviates excessively from the nominal position, this blinking error message is displayed. You must press the END key for a few seconds to correct the error.

KEY NON-FUNCTIONAL

This message always appears when you press a key that is not needed for the current dialog.

LABEL NUMBER NOT FOUND

Call only label numbers that have been set.

NO EDITING OF RUNNING PROGRAM

A program cannot be edited while it is being transmitted or executed.

PATH OFFSET WRONGLY ENDED

Do not cancel tool radius compensation in a block with a circular path.

PATH OFFSET WRONGLY STARTED

- Use the same radius compensation before and after a G24 and G25 block.
- Do not begin tool radius compensation in a block with a circular path.

PGM-SECTION CANNOT BE SHOWN

- Enter a smaller tool radius.
- 4D and 5D movements cannot be graphically simulated.
- Enter a tool axis for simulation that is the same as the axis in the definition of the workpiece blank.

PLANE WRONGLY DEFINED

- Do not change the tool axis while a basic rotation is active.
- Correctly define the main axes for circular arcs.
- Define both main axes for I,J (JK, IK).

PROBE SYSTEM NOT READY

- Be sure the transmitting/receiving window of the TS 630 is oriented to the receiving unit.
- Check whether the touch probe is ready for operation.

PROGRAM-START UNDEFINED

- Begin the program only with a G99 block.
- Do not resume an interrupted program at a block with a tangential arc or if a previously defined pole is needed.
- Program the first block with axis motion with G00 G40 G90.

RADIUS COMP. UNDEFINED

Enter radius compensation G41 or G42 in the first subprogram for Cycle G37 CONTOUR GEOMETRY.

ROUNDING-OFF NOT PERMITTED

Enter tangentially connecting arcs and rounding arcs correctly.

ROUNDING RADIUS TOO LARGE

Rounding arcs must fit between contour elements.

SELECTED BLOCK NOT ADDRESSED

Before a test run or program run, you must enter GOTO 0.

STYLUS ALREADY IN CONTACT

Before probing, pre-position the stylus where it is not touching the workpiece surface.

TOOL RADIUS TOO LARGE

Enter a tool radius that

- lies within the given limits
- permits the contour elements to be calculated and machined.

TOUCH POINT INACCESSIBLE

Pre-position the 3D touch probe to a position nearer the model.

WRONG AXIS PROGRAMMED

- Do not attempt to program locked axes.
- Program a rectangular pocket or slot in the working plane.
- · Do not mirror rotary axes.
- Enter a positive chamfer length.

WRONG RPM

Program a spindle speed within the permissible range.

WRONG SIGN PROGRAMMED

Enter the correct sign for the cycle parameter.

11.6 Address Letters (ISO)

G Functions

Group	G	Function	Non-modal function	See Page
Positioning	00	Straight line interpolation, Cartesian coordinates, rapid traverse		5-10
	01	Straight line interpolation, Cartesian coordinates		5-10
	02	Circular interpolation, Cartesian coordinates, clockwise		5-18
	03	Circular interpolation, Cartesian coordinates, counterclockwise		5-18
	05	Circular interpolation, Cartesian, no direction of rotation given		5-18
	06	Circular interpolation, Cartesian, tangential contour transition		5-24
	07	Paraxial positioning block	•	
	10	Straight line interpolation, polar coordinates, rapid traverse		5-28
	11	Straight line interpolation, polar coordinates		5-28
	12	Circular interpolation, polar coordinates, clockwise		5-30
	13	Circular interpolation, polar coordinates, counterclockwise		5-30
	15			5-30
	16	Circular interpolation, polar, no direction of rotation given Circular interpolation, polar, tangential contour transition		5-30 5-32
N. alaa				
Cycles	04	Dwell time	•	8-53
	28	Mirror image		8-48
	36	Oriented spindle stop		8-54
	37	Definition of the contour geometry		8-18
	39	Program call, cycle call with G79	•	8-53
	53	Datum shift in datum table		8-45
	54	Datum shift in program		8-43
	56	Pilot drilling (in connection with G37) SLI		8-27
	57	Rough-out (in connection with G37) SLI		8-19
	58	Contour milling, clockwise (in connection with G37) SLI		8-28
	59	Contour milling, counterclockwise (in connection with G37) SLI		8-28
	72	Scaling factor		8-51
	73	Rotation of the coordinate system		8-50
	74	Slot milling		8-11
	74 75	Rectangular pocket milling, clockwise		8-13
	76	Rectangular pocket milling, counterclockwise		8-13
	77	Circular pocket milling, clockwise		8-15
	78	Circular pocket milling, counterclockwise		8-15
	80	Working plane		8-55
	83	Pecking		8-4
	84	Tapping with floating tap holder		8-6
	85	Rigid tapping		8-8
	86	Thread cutting		8-9
	120	Contour data		8-32
	121	Pilot drilling (in connection with G37) SLII		8-33
	122	Rough-out (in connection with G37) SLII		8-34
	123	Floor finishing (in connection with G37) SLII		8-34
	124	Side finishing (in connection with G37) SLII		8-35
	125	Contour train (in connection with G37) SLII		8-37
	127	Cylinder surface (in connection with G37) SLII		8-39
	79	Cycle call	•	8-3
Select working plane	17	Working plane XY, tool axis Z		5-16
- 1	18	Working plane ZX, tool axis Y		5-16
	19	Working plane YZ, tool axis X		5-16
	20	Tool axis: IV		5-16
	24	Chamfer with length R		5-13
	25	Corner rounding with R		5-26
	26	Tangential contour approach with R		5-6
	20			
	27	Tangential contour departure with R		5-6

11.6 Address Letters (ISO)

Group	G	Function	Non-modal function	See Page
Define blank form	30 31	Blank form definition for graphics, MIN point Blank form definition for graphics, MAX point		4-21 4-21
	38	Stop program run		3-5
Tool path compensation	40 41 42 43 44	No tool radius compensation Tool radius compensation, left of the contour (RL) Tool radius compensation, right of the contour (RR) Paraxial compensation, lengthening (R+) Paraxial compensation, shortening (R-)		4-18 4-18 4-18 4-18
	51 55	Next tool number (with central tool file) Programmable probing function	•	4-15 7-23
Unit of measurement	70 71	Inches (at start of program) Millimeters (at start of program)		4-21 4-21
Dimensioning	90 91	Absolute dimensions Incremental dimensions		1-15 1-15
	98	Set label number	•	6-2
	99	Tool definition in program	•	4-7

11.6 Address Letters (ISO)

Addr letter		Function
%	Beginni	ing of program or program call with G39
A B C	Rotary	motion about the X axis motion about the Y axis motion about the Z axis
D D		eter definition (program parameter Q) ycle definition (not on TNC 426)
E	Toleran	ce for rounding arc with M112
F F F		nte me with G04 factor with G72
G	Prepara	atory function
H H		or polar coordinates in incremental/absolute dimensions nal angle with G73
J K	Y coord	linate of circle center/pole linate of circle center/pole linate of circle center/pole
L L L	Go to la	el number with G98 abel number ngth with G99
М	Miscella	aneous function
N	Block n	umber
P P		arameter in fixed cycles eter in parameter definitions
Q	Progran	n parameter/cycle parameter Q
R R R R R	Circle ra Roundia Chamfe	poordinate radius adius with G02/G03/G05 ng radius with G25/G26/G27 er with G24 dius with G99
S S	Spindle Oriente	speed d spindle stop with G36
T T	Tool de Tool ca	finition with G99 II
U V W	Linear r	motion parallel to the X axis motion parallel to the Y axis motion parallel to the Z axis
X Y Z	X axis Y axis Z axis	
*	End of	block

Parameter definitions

D	Function	See page
00	Assignment	7-7
01 02 03 04	Addition Subtraction Multiplication Division	7-7 7-7 7-7 7-7
05	Square root	7-7
06 07	Sine Cosine	7-10 7-10
08	Root sum of squares (c = $\sqrt{a^2 + b^2}$)	7-10
09 10 11 12	If equal, jump If not equal, jump If greater than, jump If less than, jump	7-11 7-11 7-11 7-11
13	Angle (angle from c sin a and c cos a)	7-10
14	Error number	7-14
15	Print	7-16
16	F-PRINT	7-17
18	Reading system data	7-18
19	Assignment PLC marker	7-19

Sequence of Program Steps

Milling an outside corner

Pro	gram step		Key/Function	Section in manual		
1	Open or se Entries:	elect program Program name	PGM PGM NAME	4.4		
2	Blank forn	n for graphic displays	G30/G31	4.4		
3	Define too	ols	G99			
	Entries:	Tool number	T			
		Tool length	L			
		Tool radius	R	4.2		
4	Call tool d	ata	T			
	Entries:	Tool number				
		Spindle axis	G17			
		Spindle speed	S	4.2		
5	Tool chan	qe				
	Entries:	Feed rate (rapid traverse)	G00			
		Radius compensation	G40			
		Absolute dimensions	G90			
		Coordinates of tool change position	X Y Z			
		Miscellaneous function (tool change)	M06	e.g. 5.4		
6	Approach starting position					
	Entries:	Feed rate (rapid traverse)	G00			
		Radius compensation	G40			
		Coordinates of starting position	X Y Z			
		Miscellaneous function (spindle ON clockwis	e) M03	5.2/5.4		
7	Move tool	axis to (first) working depth				
	Entries:	Feed rate (rapid traverse)	G00			
		Coordinate of the (first) working depth	Z	5.4		
8	Approach	contour				
	Entries:	Straight line interpolation	G01			
		Radius compensation for machining	G41/G42			
		Coordinates of first contour point	X Y			
_		Machining feed rate	F			
For sr	mooth approad	ch (if necessary), program G26 after this block.		5.2/5.4		
9	_	to last contour point				
	Entries:	Enter all required data for each contour				
		element		5 to 8		
10	Depart cor					
	Entries:	Feed rate (rapid traverse)	G00			
		Cancel radius compensation	G40			
		Coordinates of end position	X Y			
_		Miscellaneous function (spindle stop)	M05			
For sr	mooth departu	re (if necessary), program G27 after this block.		5.2/5.4		
11	Retract to					
	Entries:	Feed rate (rapid traverse)	G00			
		Coordinate above workpiece surface	Z			
		Miscellaneous function (end of program)	M02	5.2/5.4		
_	End of pro					

Miscellaneous Functions (M Functions)

Miscellaneous Functions with predetermined effect

M	Effect	Effective start	at block end	Page
M00	Program run/spindle STOP/coolant OFF		•	3-5
M02	Program run/spindle STOP/coolant OFF/ Clear status display (depending on machine parameter)/ Go to block 1		•	3-5
M03 M04 M05	Spindle ON clockwise Spindle ON counterclockwise Spindle STOP	•	•	
M06	Tool change/stop program run (depending on machine parameter)/ Spindle STOP		•	3-5
M08 M09	Coolant ON Coolant OFF	•	•	
M13 M14	Spindle ON clockwise/coolant ON Spindle ON counterclockwise/coolant ON	•		
M30	Same function as M02		•	3-5
M89	Vacant miscellaneous function or Cycle call, modally effective (depending on machine parameter)	•	•	8-3
M90	Only in lag mode: Constant contouring speed at corners	•		5-36
M91	Within the positioning block: Coordinates are referenced to machine datum	•		5-39
M92	Within the positioning block: Coordinates are referenced to position defined by machine builder, such as tool change position	•		5-39
M93	Reserved	•		
M94	Reduce display of rotary axis to value less than 360°	•		5-43
M95	Reserved		•	
M96	Reserved		•	
M97	Machine small contour steps		•	5-37
M98	Completely machine open contours		•	5-38
M99	Blockwise cycle call		•	8-3
M101 M102	Automatic tool change with replacement tool if maximum tool life has expired Reset M101	•	•	4-16 4-16
M103	Reduce feed rate during plunging to factor F (percentage)	•		5-40
M105 M106	Machining with first Kv factor Machining with second Kv factor	•		
M107 M108	Suppress error message for replacement tool with oversize Reset M107	•	•	
M109	Constant contouring speed at tool cutting edge on circular arcs (increase and decrease feed rate)	•		5-41
M110 M111	Constant contouring speed at tool cutting edge on circular arcs (feed rate decrease only) Reset M109/M110	•	•	5-41 5-41
M112	Automatic insertion of rounding arcs at non-tangential straight-line			
M113	transitions; Enter tolerance T for contour deviation Reset M112	•	•	5-41
M114 M115	Automatic compensation of machine geometry during operation with tilting axes Reset M114	•	•	5-42
M116	Feed rate for angular axes in mm/min	•		5-43
M126 M127	Optimized traverse of rotary axes Reset M126	•	•	5-44

